Endüstri Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1942
Browse
Browsing Endüstri Mühendisliği Bölümü Koleksiyonu by Scopus Q "Q2"
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Article Citation - WoS: 1Citation - Scopus: 1A Decomposition Algorithm for Single and Multiobjective Integrated Market Selection and Production Planning(Informs, 2023) van den Heuvel, Wilco; Ağralı, Semra; Taşkın, Z. CanerWe study an integrated market selection and production planning problem. There is a set of markets with deterministic demand, and each market has a certain revenue that is obtained if the market's demand is satisfied throughout a planning horizon. The demand is satisfied with a production scheme that has a lot-sizing structure. The problem is to decide on which markets' demand to satisfy and plan the production simultaneously. We consider both single and multiobjective settings. The single objective problem maximizes the profit, whereas the multiobjective problem includes the maximization of the revenue and the minimization of the production cost objectives. We develop a decomposition-based exact solution algorithm for the single objective setting and show how it can be used in a proposed three-phase algorithm for the multiobjective setting. The master problem chooses a subset of markets, and the subproblem calculates an optimal production plan to satisfy the selected markets' demand. We investigate the subproblem from a cooperative game theory perspective to devise cuts and strengthen them based on lifting. We also propose a set of valid inequalities and preprocessing rules to improve the proposed algorithm. We test the efficacy of our solution method over a suite of problem instances and show that our algorithm substantially decreases solution times for all problem instances.Article A Lot-Sizing Problem in Deliberated and Controlled Co-Production Systems(Taylor and Francis, 2021) Kabakulak, Banu; Ağralı, Semra; Taşkın, Z. Caner; Pamuk, BahadırWe consider an uncapacitated lot sizing problem in co-production systems, in which it is possible to produce multiple items simultaneously in a single production run. Each product has a deterministic demand to be satisfied on time. The decision is to choose which items to co-produce and the amount of production throughout a predetermined planning horizon. We show that the lot sizing problem with co-production is strongly NP-Hard. Then, we develop various mixed-integer linear programming (MILP) formulation of the problem and show that LP relaxations of all MILPs are equal. We develop a separation algorithm based on a set of valid inequalities, lower bounds based on a dynamic lot-sizing relaxation of our problem and a constructive heuristic that is used to obtain an initial solution for the solver, which form the basis of our proposed Branch & Cut algorithm for the problem. We test our models and algorithms on different data sets and provide the results.Article Citation - WoS: 52Citation - Scopus: 58Carbon Price Forecasting Models Based on Big Data Analytics(Taylor and Francis Ltd., 2019) Çanakoğlu, Ethem; Ağralı, Semra; Yahşi, MustafaAfter the establishment of the European Union's Emissions Trading System (EU-ETS) carbon pricing attracted many researchers. This paper aims to develop a prediction model that anticipates future carbon prices given a real-world data set. We treat the carbon pricing issue as part of big data analytics to achieve this goal. We apply three fundamental methodologies to characterize the carbon price. First method is the artificial neural network, which mimics the principle of human brain to process relevant data. As a second approach, we apply the decision tree algorithm. This algorithm is structured through making multiple binary decisions, and it is mostly used for classification. We employ two different decision tree algorithms, namely traditional and conditional, to determine the type of decision tree that gives better results in terms of prediction. Finally, we exploit the random forest, which is a more complex algorithm compared to the decision tree. Similar to the decision tree, we test both traditional and conditional random forest algorithms to analyze their performances. We use Brent crude futures, coal, electricity and natural gas prices, and DAX and S&P Clean Energy Index as explanatory variables. We analyze the variables' effects on carbon price forecasting. According to our results, S&P Clean Energy Index is the most influential variable in explaining the changes in carbon price, followed by DAX Index and coal price. Moreover, we conclude that the traditional random forest is the best algorithm based on all indicators. We provide the details of these methods and their comparisons.Article Citation - WoS: 41Citation - Scopus: 36Electric Vehicle Routing With Flexible Time Windows: a Column Generation Solution Approach(Taylor & Francis, 2020) Taş, DuyguIn this paper, we introduce the Electric Vehicle Routing Problem with Flexible Time Windows (EVRPFTW) in which vehicles are allowed to serve customers before and after the earliest and latest time window bounds, respectively. The objective of this problem is to assign electric vehicles to feasible routes and make schedules with minimum total cost that includes the traveling costs, the costs of using electric vehicles and the penalty costs incurred for earliness and lateness. The proposed mathematical model is solved by a column generation procedure. To generate an integer solution, we solve an integer programming problem using the routes constructed by the column generation algorithm. We further develop a linear programming model to compute the optimal times to start service at each customer for the selected routes. A number of wellknown benchmark instances is solved by our solution procedure to evaluate the operational gains obtained by employing flexible time windows.Article Citation - WoS: 1Citation - Scopus: 1Evaluation of Learning Management Systems Using Interval Valued Intuitionistic Fuzzy-Z Numbers(Anadolu Üniversitesi, 2023) Ucal Sarı, İrem; Sergi, DuyguThe use of online education tools has increased rapidly with the transition to distance education caused by the pandemic. The obligation to carry out all activities of face-to-face education online made it very important for the tools used in distance education to meet the increasing needs. In line with these needs, radical changes have occurred in the learning management systems used in distance education. Therefore, in this study, it is aimed to determine the features that the systems used in distance education should have and to compare the existing systems according to these features. For this purpose, a novel fuzzy extension, interval valued intuitionistic fuzzy Z-numbers, is defined for modeling uncertainty, and AHP and WASPAS methods using proposed fuzzy numbers are developed to determine the importance of decision criteria and compare alternatives.Article Citation - WoS: 2Citation - Scopus: 5Increasing Procurement Efficiency Through Optimal E-Commerce Enablement Scheduling(Emerald Group Publishing Ltd., 2019) Özlük, Özgür; Cholette, Susan; Clark, Andrew GPurpose: This study aims to show how cost savings can be achieved through optimizing the scheduling of e-commerce enablements. The University of California is one of the largest, most prestigious public education and research systems in the world, yet diminished state support is driving the search for system-wide cost savings. Design/methodology/approach: This study documents the preparation for and rollout of an e-procurement system across a subset of campuses. A math programing tool was developed for prioritizing the gradual rollout to generate the greatest expected savings subject to resource constraints. Findings: The authors conclude by summarizing the results of the rollout, discussing lessons learned and their benefit to decision-makers at other public institutions. Originality/value: The pilot program comprising three campuses has been predicted to yield $1.2m in savings over a one-year period; additional sensitivity analysis with respect to savings, project timelines and other rollout decisions illustrate the robustness of these findings.Article Citation - WoS: 10Citation - Scopus: 16Minimizing the Misinformation Spread in Social Networks(Taylor and Francis, 2019) Güney, Evren; Kuban, İ. Kuban Altınel; Tanınmış, Kübra; Aras, NecatiThe Influence Maximization Problem has been widely studied in recent years, due to rich application areas including marketing. It involves finding k nodes to trigger a spread such that the expected number of influenced nodes is maximized. The problem we address in this study is an extension of the reverse influence maximization problem, i.e., misinformation minimization problem where two players make decisions sequentially in the form of a Stackelberg game. The first player aims to minimize the spread of misinformation whereas the second player aims its maximization. Two algorithms, one greedy heuristic and one matheuristic, are proposed for the first player’s problem. In both of them, the second player’s problem is approximated by Sample Average Approximation, a well-known method for solving two-stage stochastic programming problems, that is augmented with a state-of-the-art algorithm developed for the influence maximization problem.Article Citation - WoS: 21Citation - Scopus: 20Modeling of Carbon Credit Prices Using Regime Switching Approach(2018) Çanakoğlu, Ethem; Ağralı, Semra; Adıyeke, EsraIn this study, we analyze the price dynamics of carbon certificates that are traded under the European Union's Emissions Trading System (EU-ETS). With the aim of investigating the joint relations among carbon, electricity, and fuel prices, we model historical prices using several methods and incorporating structural changes, such as econometric time series, regime switching, and multivariate vector autoregression models. We compare the results of the structural model with the results of traditional Markov switching and autoregressive models with breaks and present performance analysis based on the mean average percentage error, root mean squared error, and coefficient of determination. According to these performance tests, models with regimes outperform the approaches where breaks are defined using ex ante dummy variables. Moreover, we conclude that among regime switching models, univariate models are better than multivariate counterparts for modeling carbon price series for the analysis of both in-sample and out-of-samples. Published by AIP Publishing.Article Citation - WoS: 1Citation - Scopus: 2Nonlinear Benefit-Cost Optimization-Based Selection of Insulation Material and Window Type: a Case Study in Turkey(2017) Ağralı, Semra; Uctuğ, Fehmi GörkemIn this study, we maximize the energy savings of a hypothetical household by choosing an optimal insulation material with its optimal thickness and also the optimal window type. We develop a nonlinear mixed integer optimization model that maximizes the net present value of the benefits obtained by insulation over the lifespan of the house. Savings are calculated based on the gains from the electricity usage for air conditioning during cooling-required days and the fuel usage for heaters in heating-required days. The heat transfer calculations consider conductive, convective, and radiative components simultaneously. The optimization model takes the climate conditions of the region where the house is located, the consumer's desired indoor temperature, and the properties of the insulation options; then, it returns a combination of selected insulation materials with its optimum thickness and window type as output. We applied the optimization model developed to hypothetical houses in four different climatic regions of Turkey for different lifespans. For all reasonable lifespans, the model choses stonewool as the ideal insulation material. For high interest rates, single windows or double-glazed windows are preferable, but as the interest rate decreases and the net present value of the energy-savings increases, the model prefers triple-glazed windows as the ideal material. Erzurum, a city in climatic region 4, characterized by very cold winters and cool summers, was found to require the highest optimum insulation thickness, and the economic return resulting from the above-mentioned energy-saving actions was also found to be the highest in the case of Erzurum. In all the regions, the energy-saving investments were found to be feasible via applying the feasibility assessment techniques of net present value and payback period. The model developed in this study is applicable to any household as long as the required input data are available. Published by AIP Publishing.Article Citation - WoS: 9Citation - Scopus: 9Sequential Testing in Batches(2017) Ünlüyurt, Tonguc; Shahmoradi, Zahed; Özluk, Özgur; Selcuk, Barış; Daldal, RebiWe study a new extension of the Sequential Testing problem with a modified cost structure that allows performing of some tests in batches. As in the Sequential Testing problem, we assume a certain dependence between the test results and the conclusion. Namely, we stop testing once a positive result is obtained or all tests are negative. Our extension, motivated by health care applications, considers a fixed cost associated with executing a batch of tests, with the general notion that the more tests are performed in batches, the smaller the total contribution of fixed costs to the sequential testing process. The goal is to minimize the expected cost of testing by finding the optimal choice and sequence of the batches available. The resulting NP-hard model is a variation of the set partitioning problem. We propose various heuristic algorithms for the effective solution of the problem and then demonstrate the performances of the algorithms through extensive numerical experiments.
