Endüstri Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1942
Browse
Browsing Endüstri Mühendisliği Bölümü Koleksiyonu by WoS Q "Q3"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation - WoS: 1Citation - Scopus: 1A Decomposition Algorithm for Single and Multiobjective Integrated Market Selection and Production Planning(Informs, 2023) van den Heuvel, Wilco; Ağralı, Semra; Taşkın, Z. CanerWe study an integrated market selection and production planning problem. There is a set of markets with deterministic demand, and each market has a certain revenue that is obtained if the market's demand is satisfied throughout a planning horizon. The demand is satisfied with a production scheme that has a lot-sizing structure. The problem is to decide on which markets' demand to satisfy and plan the production simultaneously. We consider both single and multiobjective settings. The single objective problem maximizes the profit, whereas the multiobjective problem includes the maximization of the revenue and the minimization of the production cost objectives. We develop a decomposition-based exact solution algorithm for the single objective setting and show how it can be used in a proposed three-phase algorithm for the multiobjective setting. The master problem chooses a subset of markets, and the subproblem calculates an optimal production plan to satisfy the selected markets' demand. We investigate the subproblem from a cooperative game theory perspective to devise cuts and strengthen them based on lifting. We also propose a set of valid inequalities and preprocessing rules to improve the proposed algorithm. We test the efficacy of our solution method over a suite of problem instances and show that our algorithm substantially decreases solution times for all problem instances.Article Citation - WoS: 52Citation - Scopus: 58Carbon Price Forecasting Models Based on Big Data Analytics(Taylor and Francis Ltd., 2019) Çanakoğlu, Ethem; Ağralı, Semra; Yahşi, MustafaAfter the establishment of the European Union's Emissions Trading System (EU-ETS) carbon pricing attracted many researchers. This paper aims to develop a prediction model that anticipates future carbon prices given a real-world data set. We treat the carbon pricing issue as part of big data analytics to achieve this goal. We apply three fundamental methodologies to characterize the carbon price. First method is the artificial neural network, which mimics the principle of human brain to process relevant data. As a second approach, we apply the decision tree algorithm. This algorithm is structured through making multiple binary decisions, and it is mostly used for classification. We employ two different decision tree algorithms, namely traditional and conditional, to determine the type of decision tree that gives better results in terms of prediction. Finally, we exploit the random forest, which is a more complex algorithm compared to the decision tree. Similar to the decision tree, we test both traditional and conditional random forest algorithms to analyze their performances. We use Brent crude futures, coal, electricity and natural gas prices, and DAX and S&P Clean Energy Index as explanatory variables. We analyze the variables' effects on carbon price forecasting. According to our results, S&P Clean Energy Index is the most influential variable in explaining the changes in carbon price, followed by DAX Index and coal price. Moreover, we conclude that the traditional random forest is the best algorithm based on all indicators. We provide the details of these methods and their comparisons.Article Citation - WoS: 41Citation - Scopus: 36Electric Vehicle Routing With Flexible Time Windows: a Column Generation Solution Approach(Taylor & Francis, 2020) Taş, DuyguIn this paper, we introduce the Electric Vehicle Routing Problem with Flexible Time Windows (EVRPFTW) in which vehicles are allowed to serve customers before and after the earliest and latest time window bounds, respectively. The objective of this problem is to assign electric vehicles to feasible routes and make schedules with minimum total cost that includes the traveling costs, the costs of using electric vehicles and the penalty costs incurred for earliness and lateness. The proposed mathematical model is solved by a column generation procedure. To generate an integer solution, we solve an integer programming problem using the routes constructed by the column generation algorithm. We further develop a linear programming model to compute the optimal times to start service at each customer for the selected routes. A number of wellknown benchmark instances is solved by our solution procedure to evaluate the operational gains obtained by employing flexible time windows.
