Determination of Alzheimer's Disease Stages by Artificial Learning Algorithms

dc.contributor.author Bulut, Nurgül
dc.contributor.author Çakar, Tuna
dc.contributor.author Arslan, İlker
dc.contributor.author Akıncı, Zeynep Karaoğlu
dc.contributor.author Oner, Kevser Setenay
dc.date.accessioned 2025-10-05T16:35:45Z
dc.date.available 2025-10-05T16:35:45Z
dc.date.issued 2025
dc.description.abstract Introduction: This study aims to determine the stages of Alzheimer's disease (AD) using different machine learning algorithms, and compares the performance of these models. Methods: Demographic, genetic, and neurocognitive inventory data from the National Alzheimer's Coordinating Center (NACC) database as well as brain volume/thickness data from magnetic resonance imaging (MRI) scans were used. Deep Neural Networks, Ordinal Logistic Regression, Random Forest, Gaussian Naive Bayes, XGBoost, and LightGBM models were used to identify four different ordinal stages of AD. Results: Although the performance measures of the developed models were similar, the highest classification rate of AD stages was achieved by the Random Forest model (accuracy: 0.86; F1 score: 0.86; AUC: 0.95). The outputs of the model with the best performance were explained by the SHapley Addictive exPlanations (SHAP) method. Conclusions: This indicates that non-invasive markers and machine learning models can be used effectively in early diagnosis and decision support systems to predict stages of AD. © 2025 Elsevier B.V., All rights reserved.
dc.identifier.doi 10.6000/1929-6029.2025.14.50
dc.identifier.issn 1929-6029
dc.identifier.scopus 2-s2.0-105016678414
dc.identifier.uri https://doi.org/10.6000/1929-6029.2025.14.50
dc.identifier.uri https://hdl.handle.net/20.500.11779/3094
dc.language.iso en
dc.publisher Lifescience Global
dc.relation.ispartof International Journal of Statistics in Medical Research
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Alzheimer's Disease
dc.subject Artificial Intelligence
dc.subject Artificial Learning Algorithm
dc.subject Explainable Artificial Intelligence
dc.subject Machine Learning
dc.subject National Alzheimer's Coordinating Center
dc.subject Shapley Addictive Explanations
dc.subject Matplotlib 3.6.0
dc.subject Pandas 1.5.0
dc.subject Python Libraries Numpy 1.23.0
dc.subject Python Programming Language Version 3.10
dc.subject Scikit-Learn 1.1.3
dc.subject Statsmodel 0.13.5
dc.subject Tensorflow 2.10
dc.subject XGBoost
dc.subject Adult
dc.subject Aged
dc.subject Alzheimer Disease
dc.subject Article
dc.subject Artificial Intelligence
dc.subject Artificial Learning Algorithm
dc.subject Bayesian Learning
dc.subject Cognitive Defect
dc.subject Controlled Study
dc.subject Decision Support System
dc.subject Deep Neural Network
dc.subject Depression
dc.subject Diagnostic Test Accuracy Study
dc.subject Geriatric Depression Scale
dc.subject Human
dc.subject Learning Algorithm
dc.subject Logistic Regression Analysis
dc.subject Machine Learning Algorithm
dc.subject Major Clinical Study
dc.subject Mini Mental State Examination
dc.subject Montreal Cognitive Assessment
dc.subject Neuropathology
dc.subject Neuropsychiatric Inventory
dc.subject Nuclear Magnetic Resonance Imaging
dc.subject Physician
dc.subject Principal Component Analysis
dc.subject Random Forest
dc.subject Receiver Operating Characteristic
dc.subject Sensitivity and Specificity
dc.title Determination of Alzheimer's Disease Stages by Artificial Learning Algorithms
dc.type Article
dspace.entity.type Publication
gdc.author.institutional Çakar, Tuna
gdc.author.institutional Çakar, Tuna
gdc.author.institutional Arslan, İlker
gdc.author.scopusid 56806587300
gdc.author.scopusid 56329345400
gdc.author.scopusid 57191835158
gdc.author.scopusid 59254026300
gdc.author.scopusid 59969339600
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 542
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
gdc.description.scopusquality Q4
gdc.description.startpage 532
gdc.description.volume 14
gdc.description.wosquality N/A
gdc.identifier.openalex W4413876639
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.0
gdc.opencitations.count 0
gdc.publishedmonth Eylül
gdc.scopus.citedcount 0
gdc.wos.yokperiod YÖK - 2025-26
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication 3da2ea70-0485-49bd-804a-61304f485154
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 00b4b5da-2140-4d4a-a2b0-9c4ae142ea53
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication.latestForDiscovery a6e60d5c-b0c7-474a-b49b-284dc710c078

Files