Flight Delay Prediction

dc.contributor.advisor Taş Küten, Duygu
dc.contributor.author Kurt, Mustafa
dc.date.accessioned 2019-11-12T13:42:05Z
dc.date.available 2019-11-12T13:42:05Z
dc.date.issued 2019
dc.description.abstract This study aims to create a model to predict flight departure delays. Various factors might affect a flight delay, and thus different features might be selected as input to create a model concerning priorities and the power of control over the features for the party who makes the analysis. In this study, domestic commercial flights in the U.S. operated in August 2018 are studied. Besides, airplane, passenger boarding, and cargo data are combined with flight data to benefit from possible insights related to these factors. For predicting the flight delays, machine learning methods such as decision trees, random forest, bagging classifier, extra trees classifier, gradient boosting and xgboost classifier are used and results are analyzed. Further studies could be adding extra features such as data related to flight planning, personnel data, loading data, data about technical processes to prepare a plane to a flight to improve prediction capacity.
dc.description.abstract Bu çalışma, uçuş kalkış gecikmelerini tahmin etmek için bir model oluşturmayı amaçlamaktadır. Çeşitli faktörler bir uçuş gecikmesini etkileyebilir ve bu nedenle, öncelikleri ve analizi yapan tarafın faktörler üzerindeki kontrolüne göre bir model oluşturmak için girdi olarak farklı özellikler seçilebilir. Bu çalışmada, ABD’de Ağustos 2018’de düzenlenen iç hat uçuşları incelenmiştir. Ayrıca, uçak, yolcu uçağı ve kargo verileri, bu faktörlerle ilgili olası iç görülerden yararlanmak için uçuş verileriyle birleştirilmiştir. Uçuş gecikmelerini tahmin etmek için karar ağacı, rastgele orman, torbalama sınıflandırcı, ekstra ağaçlar, grade takviyeli sınflandırıcı ve ekstra grade takviyeli sınıflandırıcı gibi makine öğrenme metotları ve sonuçları analiz edilmiştir. Çalışmanın ileriki aşamaları için uçuş planlama verileri, personel verileri, yükleme verileri ve bir uçağı uçuşa hazırlamak için teknik süreçler ile ilgili veriler kullanılarak modelin tahminleme kapasitesi artırılabilir.
dc.identifier.citation Kurt, M. (2019). Flight delay prediction, MEF Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye
dc.identifier.uri https://hdl.handle.net/20.500.11779/1217
dc.language.iso en
dc.publisher MEF Üniversitesi, Fen Bilimleri Enstitüsü
dc.rights info:eu-repo/semantics/openAccess
dc.subject Flight Delays
dc.subject Prediction
dc.subject Machine Learning
dc.subject Classification
dc.subject TreeBased Algorithms
dc.subject Uçuş Gecikmeleri
dc.subject Tahminleme
dc.subject Makine Öğrenmesi
dc.subject Sınıflandırma
dc.subject Karar ağacı Temelli Algoritmalar
dc.title Flight Delay Prediction
dc.title.alternative Uçuş gecikme tahminlemesi
dc.type Master's Degree Project
dspace.entity.type Publication
gdc.author.institutional Kurt, Mustafa
gdc.coar.access open access
gdc.coar.type text::thesis::master thesis
gdc.description.department Lisansüstü Eğitim Enstitüsü, Büyük Veri Analitiği Yüksek Lisans Programı
gdc.description.publicationcategory YL-Bitirme Projesi
gdc.publishedmonth N/A
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery a6e60d5c-b0c7-474a-b49b-284dc710c078

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MustafaKurt.pdf
Size:
572.99 KB
Format:
Adobe Portable Document Format
Description:
YL-Proje Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: