Predicting the Reasonable Departments for the Human Resources Related Questions by Using the Text Classification Algorithms

dc.contributor.advisor Özlük, Özgür
dc.contributor.author Sancı, Yavuz
dc.date.accessioned 2019-11-12T13:42:02Z
dc.date.available 2019-11-12T13:42:02Z
dc.date.issued 2018
dc.description.abstract The employees of Yapı Kredi Bank use a help desk system to ask their Human Resources related questions to the employees of the Human Resources departments. The questions are assigned automatically to the relevant departments by the system according to the subjects of the questions. In some cases, the mismatches between the contents and the subjects of the questions may cause the wrong Human Resources department assignments of the questions. Even though the application allows Human Resources employees to redirect the questions to the appropriate Human Resources departments, which are responsible for answering, the response time of these questions lasts longer. This project aims to analyze the content of the Human Resources related questions by using the text classification algorithms to predict the responsible Human Resources departments. Thus, it is aimed to respond to the questions in a much shorter time.
dc.description.abstract Yapı ve Kredi Bankası çalışanları İnsan Kaynakları ile ilgili sorularını bir talep yönetimi sistemi kullanarak İnsan Kaynakları çalışanlarına iletmektedir. Soruların hangi İnsan Kaynakları ekibine sistem tarafından yönlendirileceği; çalışanın sorusunu sorarken seçeceği konu başlığına göre belirlenmektedir. Bazı durumlarda; seçilen konu başlığıyla sorunun içeriği birbiriyle örtüşmediği için uygulama bir takım soruları yanlış İnsan Kaynakları ekiplerine yönlendirmektedir. Her ne kadar; İnsan Kaynakları çalışanları kendilerinin onayına düşen bu soruları yanıtlamakla sorumlu olan diğer İnsan Kaynakları ekiplerine yönlendirebiliyor olsalar da; bu durum soruların çözüm sürelerinin uzamasına sebep olmaktadır. Bu çalışma; metin sınıflandırma teknikleri kullanarak İnsan Kaynakları ile ilgili soruların metin içeriklerinin analiz edilmesini ve sorulara cevap vermekle sorumlu İnsan Kaynakları departmanlarının tahminlenmesini kapsamaktadır. Bu sayede, banka çalışanlarının İnsan Kaynakları’na ilettiği sorulara çok daha kısa süre içerisinde yanıt verilmesi hedeflenmektedir.
dc.identifier.citation Sancı, Y. (2018). Predicting the reasonable departments for the human resources related questions by using the text classification algorithms, MEF Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye
dc.identifier.uri https://hdl.handle.net/20.500.11779/1188
dc.language.iso en
dc.publisher MEF Üniversitesi, Fen Bilimleri Enstitüsü
dc.rights info:eu-repo/semantics/openAccess
dc.subject Text Classification
dc.subject Human Resources
dc.subject Predicting
dc.subject Metin Sınıflandırma
dc.subject İnsan Kaynakları
dc.subject Tahminleme
dc.title Predicting the Reasonable Departments for the Human Resources Related Questions by Using the Text Classification Algorithms
dc.title.alternative Metin sınıflandırma teknikleri kullanarak insan kaynakları ile ilgili sorular için sorumlu ekiplerin tahminlenmesi
dc.type Master's Degree Project
dspace.entity.type Publication
gdc.author.institutional Sancı, Yavuz
gdc.coar.access open access
gdc.coar.type text::thesis::master thesis
gdc.description.department Lisansüstü Eğitim Enstitüsü, Büyük Veri Analitiği Yüksek Lisans Programı
gdc.description.publicationcategory YL-Bitirme Projesi
gdc.publishedmonth N/A
gdc.virtual.author Özlük, Özgür
relation.isAuthorOfPublication 78d216c1-2c30-45e3-9ba3-2d8f3acca8b6
relation.isAuthorOfPublication.latestForDiscovery 78d216c1-2c30-45e3-9ba3-2d8f3acca8b6
relation.isOrgUnitOfPublication 636850bf-e58c-4b59-bcf0-fa7418bb7977
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 636850bf-e58c-4b59-bcf0-fa7418bb7977

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
YavuzSancı.pdf
Size:
9.18 MB
Format:
Adobe Portable Document Format
Description:
Yl-proje dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: