Makine Öğrenimi ve Çok Boyutlu Anket Verileri Kullanılarak Öğrenci Başarısının Tahmini: Eğitim Programı Üzerine Bir Uygulama

dc.contributor.author Behsi, Zeynep
dc.contributor.author Dereli, Serhan
dc.contributor.author Çakar, Tuna
dc.contributor.author Patel, Jay Nimish
dc.contributor.author Cicek, Gultekin
dc.contributor.author Drias, Yassine
dc.date.accessioned 2025-10-05T16:35:48Z
dc.date.available 2025-10-05T16:35:48Z
dc.date.issued 2025
dc.description Isik University
dc.description.abstract This study develops a machine learning model integrating survey data and performance metrics to predict student success in the UpSchool education program. Students' personality traits assessed by DISC analysis, financial management, social, and emotional skills were clustered into "Successful,""Unsuccessful,"and "Moderately Successful"groups using K-means clustering. The SMOTE technique addressed data imbalance issues, and algorithms such as Logistic Regression, Random Forest, LightGBM, and AdaBoost were tested. After hyperparameter optimization, AdaBoost and LightGBM achieved the highest predictive performance. Results demonstrated the effectiveness of machine learning models in forecasting student success in educational programs. Future studies are recommended to enhance model performance through expanded datasets and to validate the model's applicability across diverse educational contexts. © 2025 Elsevier B.V., All rights reserved.
dc.identifier.doi 10.1109/SIU66497.2025.11112134
dc.identifier.isbn 9798331566555
dc.identifier.scopus 2-s2.0-105015390707
dc.identifier.uri https://doi.org/10.1109/SIU66497.2025.11112134
dc.identifier.uri https://hdl.handle.net/20.500.11779/3102
dc.language.iso tr
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.relation.ispartof -- 33rd IEEE Conference on Signal Processing and Communications Applications, SIU 2025 -- Istanbul; Isik University Sile Campus -- 211450
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Adaboost
dc.subject K-Means Clustering
dc.subject LightGBM
dc.subject Smote
dc.subject Student Success Prediction
dc.subject Education Computing
dc.subject Learning Systems
dc.subject Logistic Regression
dc.subject Machine Learning
dc.subject Students
dc.subject Case-Studies
dc.subject Educational Program
dc.subject K-Means++ Clustering
dc.subject Lightgbm
dc.subject Machine Learning Models
dc.subject Machine-Learning
dc.subject SMOTE
dc.subject Student Success
dc.subject Survey Data
dc.subject Forecasting
dc.title Makine Öğrenimi ve Çok Boyutlu Anket Verileri Kullanılarak Öğrenci Başarısının Tahmini: Eğitim Programı Üzerine Bir Uygulama
dc.title.alternative Predicting Student Success Using Machine Learning and Multidimensional Survey Data: A Case Study on an Educational Program
dc.type Conference Object
dspace.entity.type Publication
gdc.author.institutional Çakar, Tuna
gdc.author.scopusid 60093497200
gdc.author.scopusid 60093145400
gdc.author.scopusid 56329345400
gdc.author.scopusid 60092909300
gdc.author.scopusid 60093618200
gdc.author.scopusid 56440023300
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W4413467960
gdc.index.type Scopus
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.popularity 2.0809511E-10
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.3
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 0
gdc.publishedmonth Ağustos
gdc.scopus.citedcount 0
gdc.virtual.author Çakar, Tuna
gdc.virtual.author Drias, Yassine
gdc.yokperiod YÖK - 2024-25
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication fc428ec9-7ded-49de-98b3-c32be0d42348
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication.latestForDiscovery a6e60d5c-b0c7-474a-b49b-284dc710c078

Files