A Bayesian Allocation Model Based Approach To Mixed Membership Stochastic Blockmodels

dc.contributor.author Kırbız, Serap
dc.contributor.author Hızlı, Çağlar
dc.date.accessioned 2022-03-02T12:46:26Z
dc.date.available 2022-03-02T12:46:26Z
dc.date.issued 2022
dc.description.abstract Although detecting communities in networks has attracted considerable recent attention, estimating the number of communities is still an open problem. In this paper, we propose a model, which replicates the generative process of the mixed-membership stochastic block model (MMSB) within the generic allocation framework of Bayesian allocation model (BAM) and BAM-MMSB. In contrast to traditional blockmodels, BAM-MMSB considers the observations as Poisson counts generated by a base Poisson process and marks according to the generative process of MMSB. Moreover, the optimal number of communities for BAM-MMSB is estimated by computing the variational approximations of the marginal likelihood for each model order. Experiments on synthetic and real data sets show that the proposed approach promises a generalized model selection solution that can choose not only the model size but also the most appropriate decomposition.
dc.identifier.citation Hızlı, Ç., & Kırbız, S. (January 2022). A Bayesian Allocation Model Based Approach to Mixed Membership Stochastic Blockmodels. Applied Artificial Intelligence, pp 1-23. DOI : https://doi.org/10.1080/08839514.2022.2032923
dc.identifier.doi 10.1080/08839514.2022.2032923
dc.identifier.issn 1087-6545
dc.identifier.issn 0883-9514
dc.identifier.scopus 2-s2.0-85124183409
dc.identifier.uri https://doi.org/10.1080/08839514.2022.2032923
dc.identifier.uri https://hdl.handle.net/20.500.11779/1747
dc.language.iso en
dc.publisher Taylor and Francis Ltd.
dc.relation.ispartof Applied Artificial Intelligence
dc.rights info:eu-repo/semantics/openAccess
dc.subject Community
dc.subject Inference
dc.title A Bayesian Allocation Model Based Approach To Mixed Membership Stochastic Blockmodels
dc.type Article
dspace.entity.type Publication
gdc.author.id Serap Kırbız / 0000-0001-7718-3683
gdc.author.institutional Kırbız, Serap
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü
gdc.description.endpage 23
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
gdc.description.scopusquality Q1
gdc.description.startpage 1
gdc.description.volume 36
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4210761999
gdc.identifier.wos WOS:000750893600001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Inference
gdc.oaire.keywords Electronic computers. Computer science
gdc.oaire.keywords Q300-390
gdc.oaire.keywords Community
gdc.oaire.keywords QA75.5-76.95
gdc.oaire.keywords Cybernetics
gdc.oaire.popularity 2.19756E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.02
gdc.opencitations.count 0
gdc.plumx.newscount 1
gdc.plumx.scopuscites 0
gdc.publishedmonth Ocak
gdc.relation.journal Applied Artificial Intelligence
gdc.scopus.citedcount 0
gdc.virtual.author Kırbız, Serap
gdc.wos.citedcount 0
gdc.wos.collaboration Uluslararası işbirliği ile yapılmayan - HAYIR
gdc.wos.documenttype Article; Early Access
gdc.wos.indexdate 2022
gdc.wos.publishedmonth Ocak
gdc.yokperiod YÖK - 2021-22
relation.isAuthorOfPublication 552e4b0c-955f-4b93-925b-08cb2e6c5cc0
relation.isAuthorOfPublication.latestForDiscovery 552e4b0c-955f-4b93-925b-08cb2e6c5cc0
relation.isOrgUnitOfPublication de19334f-6a5b-4f7b-9410-9433c48d1e5a
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery de19334f-6a5b-4f7b-9410-9433c48d1e5a

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
08839514.2022.pdf
Size:
3.53 MB
Format:
Adobe Portable Document Format
Description:
Full Text - Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: