A Bayesian Allocation Model Based Approach To Mixed Membership Stochastic Blockmodels
| dc.contributor.author | Kırbız, Serap | |
| dc.contributor.author | Hızlı, Çağlar | |
| dc.date.accessioned | 2022-03-02T12:46:26Z | |
| dc.date.available | 2022-03-02T12:46:26Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | Although detecting communities in networks has attracted considerable recent attention, estimating the number of communities is still an open problem. In this paper, we propose a model, which replicates the generative process of the mixed-membership stochastic block model (MMSB) within the generic allocation framework of Bayesian allocation model (BAM) and BAM-MMSB. In contrast to traditional blockmodels, BAM-MMSB considers the observations as Poisson counts generated by a base Poisson process and marks according to the generative process of MMSB. Moreover, the optimal number of communities for BAM-MMSB is estimated by computing the variational approximations of the marginal likelihood for each model order. Experiments on synthetic and real data sets show that the proposed approach promises a generalized model selection solution that can choose not only the model size but also the most appropriate decomposition. | |
| dc.identifier.citation | Hızlı, Ç., & Kırbız, S. (January 2022). A Bayesian Allocation Model Based Approach to Mixed Membership Stochastic Blockmodels. Applied Artificial Intelligence, pp 1-23. DOI : https://doi.org/10.1080/08839514.2022.2032923 | |
| dc.identifier.doi | 10.1080/08839514.2022.2032923 | |
| dc.identifier.issn | 1087-6545 | |
| dc.identifier.issn | 0883-9514 | |
| dc.identifier.scopus | 2-s2.0-85124183409 | |
| dc.identifier.uri | https://doi.org/10.1080/08839514.2022.2032923 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.11779/1747 | |
| dc.language.iso | en | |
| dc.publisher | Taylor and Francis Ltd. | |
| dc.relation.ispartof | Applied Artificial Intelligence | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.subject | Community | |
| dc.subject | Inference | |
| dc.title | A Bayesian Allocation Model Based Approach To Mixed Membership Stochastic Blockmodels | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| gdc.author.id | Serap Kırbız / 0000-0001-7718-3683 | |
| gdc.author.institutional | Kırbız, Serap | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü | |
| gdc.description.endpage | 23 | |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 1 | |
| gdc.description.volume | 36 | |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W4210761999 | |
| gdc.identifier.wos | WOS:000750893600001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.5942106E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Inference | |
| gdc.oaire.keywords | Electronic computers. Computer science | |
| gdc.oaire.keywords | Q300-390 | |
| gdc.oaire.keywords | Community | |
| gdc.oaire.keywords | QA75.5-76.95 | |
| gdc.oaire.keywords | Cybernetics | |
| gdc.oaire.popularity | 2.19756E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.02 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.newscount | 1 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.publishedmonth | Ocak | |
| gdc.relation.journal | Applied Artificial Intelligence | |
| gdc.scopus.citedcount | 0 | |
| gdc.virtual.author | Kırbız, Serap | |
| gdc.wos.citedcount | 0 | |
| gdc.wos.collaboration | Uluslararası işbirliği ile yapılmayan - HAYIR | |
| gdc.wos.documenttype | Article; Early Access | |
| gdc.wos.indexdate | 2022 | |
| gdc.wos.publishedmonth | Ocak | |
| gdc.yokperiod | YÖK - 2021-22 | |
| relation.isAuthorOfPublication | 552e4b0c-955f-4b93-925b-08cb2e6c5cc0 | |
| relation.isAuthorOfPublication.latestForDiscovery | 552e4b0c-955f-4b93-925b-08cb2e6c5cc0 | |
| relation.isOrgUnitOfPublication | de19334f-6a5b-4f7b-9410-9433c48d1e5a | |
| relation.isOrgUnitOfPublication | 0d54cd31-4133-46d5-b5cc-280b2c077ac3 | |
| relation.isOrgUnitOfPublication | a6e60d5c-b0c7-474a-b49b-284dc710c078 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | de19334f-6a5b-4f7b-9410-9433c48d1e5a |
