Rfm Based Customer Segmentation for a Mobile Application

Loading...
Thumbnail Image

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

MEF Üniversitesi Fen Bilimleri Enstitüsü

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

In this project, customer segmentation was made for Doggo, a mobile application that brings together trained dog walkers for people who are not able to provide daily needs of their dogs. The data was organized by obtaining the columns of recency, frequency, monetary and tenure, and RFM-based customer segmentation was made using machine learning algorithms such as K-means and Gaussian Mixture Model (GMM). Then, the model was built with the part of the dataset that includes recency, monetary and tenure columns using K-means. In addition, with a function developed, the RFM and tenure will be repeated at intervals determined by the Doggo operation team, and this tool is used to monitor the customer condition changing. Various marketing campaigns have been proposed according to the current situation and the transitions they have made.

Description

Keywords

Marketing, Customer Segmentation, RFM, Clustering, Machine Learning, K-means clustering, GMM clustering

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Baykan, O. B. (2021). RFM Based Customer Segmentation for a Mobile Application. MEF Üniversitesi Fen Bilimleri Enstitüsü, Büyük Veri Analitiği Yüksek Lisans Programı. ss. 1-31

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

1-31

End Page

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo