Improving Facial Emotion Recognition Through Dataset Merging and Balanced Training Strategies

dc.contributor.author Kirbiz, Serap
dc.date.accessioned 2025-05-05T19:42:52Z
dc.date.available 2025-05-05T19:42:52Z
dc.date.issued 2025
dc.description.abstract In this paper, a deep learning framework is proposed for automatic facial emotion based on deep convolutional networks. In order to increase the generalization ability and the robustness of the method, the dataset size is increased by merging three publicly available facial emotion datasets: CK+, FER+ and KDEF. Despite the increase in dataset size, the minority classes still suffer from insufficient number of training samples, leading to data imbalance. The data imbalance problem is minimized by online and offline augmentation techniques and random weighted sampling. Experimental results demonstrate that the proposed method can recognize the seven basic emotions with 82% accuracy. The results demonstrate the effectiveness of the proposed approach in tackling the challenges of data imbalance and improving classification performance in facial emotion recognition.
dc.identifier.doi 10.1016/j.jfranklin.2025.107659
dc.identifier.issn 0016-0032
dc.identifier.issn 1879-2693
dc.identifier.uri https://doi.org/10.1016/j.jfranklin.2025.107659
dc.identifier.uri https://hdl.handle.net/20.500.11779/2570
dc.language.iso en
dc.publisher Pergamon-Elsevier Science Ltd
dc.relation.ispartof Journal of the Franklin Institute
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Facial Emotion Recognition
dc.subject Convolutional Neural Networks
dc.subject Face Alignment
dc.subject Data Augmentation
dc.subject Facial Landmarks
dc.subject Random Weighted Sampling
dc.title Improving Facial Emotion Recognition Through Dataset Merging and Balanced Training Strategies
dc.type Article
dspace.entity.type Publication
gdc.author.institutional Kırbız, Serap
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü
gdc.description.issue 7
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
gdc.description.scopusquality Q1
gdc.description.startpage 107659
gdc.description.volume 362
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4408848200
gdc.identifier.wos WOS:001458635300001
gdc.index.type WoS
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.0809511E-10
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.06
gdc.opencitations.count 0
gdc.plumx.mendeley 6
gdc.publishedmonth Mayıs
gdc.virtual.author Kırbız, Serap
gdc.wos.citedcount 0
gdc.wos.publishedmonth Mayis
gdc.yokperiod YÖK - 2024-25
relation.isAuthorOfPublication 552e4b0c-955f-4b93-925b-08cb2e6c5cc0
relation.isAuthorOfPublication.latestForDiscovery 552e4b0c-955f-4b93-925b-08cb2e6c5cc0
relation.isOrgUnitOfPublication de19334f-6a5b-4f7b-9410-9433c48d1e5a
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery de19334f-6a5b-4f7b-9410-9433c48d1e5a

Files