Exploring Generative AI and Unsupervised Learning for Digital Soil Classification: A Case Study of Algeria

dc.contributor.author Belkadi, W.H.
dc.contributor.author Drias, Y.
dc.contributor.author Drias, H.
dc.contributor.author Bouchelkia, H.
dc.contributor.author Hamdous, S.
dc.date.accessioned 2025-11-05T15:34:15Z
dc.date.available 2025-11-05T15:34:15Z
dc.date.issued 2025
dc.description Antalya Bilim University; IEEE en_US
dc.description.abstract Accurate soil type mapping is vital for sustainable agriculture and land management. Yet, Algeria remains under-represented in global soil databases. To address this, we propose a pipeline combining Generative AI for data extraction with unsupervised learning for soil classification. After harmonizing Algerian soil data, we evaluate four clustering algorithms - K-means, DBSCAN, HDBSCAN, and Self-Organizing Maps - under various preprocessing settings. Internal and external metrics guide model selection. K-means and DBSCAN produced the most coherent clusters, while SOM best aligned with FAO soil types. RuleFit was then used to extract interpretable rules defining each cluster. This work highlights the potential of AI-based, interpretable clustering for digital soil mapping in data-scarce regions like Algeria. © 2025 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1109/ACDSA65407.2025.11166348
dc.identifier.isbn 9798331535629
dc.identifier.scopus 2-s2.0-105018470117
dc.identifier.uri https://doi.org/10.1109/ACDSA65407.2025.11166348
dc.identifier.uri https://hdl.handle.net/20.500.11779/3116
dc.language.iso en
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.relation.ispartof -- 2nd International Conference on Artificial Intelligence, Computer, Data Sciences, and Applications, ACDSA 2025 -- Antalya -- 213104
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Clustering en_US
dc.subject DBSCAN en_US
dc.subject Digital Soil Mapping en_US
dc.subject Generative AI en_US
dc.subject HDBSCAN en_US
dc.subject K-Means en_US
dc.subject RuleFit en_US
dc.subject Self-Organizing Maps en_US
dc.title Exploring Generative AI and Unsupervised Learning for Digital Soil Classification: A Case Study of Algeria
dc.type Conference Object
dspace.entity.type Publication
gdc.author.institutional Drias, Yassine
gdc.author.scopusid 58478811000
gdc.author.scopusid 56440023300
gdc.author.scopusid 11538926200
gdc.author.scopusid 60136798200
gdc.author.scopusid 58648385700
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.wosquality N/A
gdc.publishedmonth Ağustos
gdc.virtual.author Drias, Yassine
gdc.yokperiod YÖK - 2024-25
relation.isAuthorOfPublication fc428ec9-7ded-49de-98b3-c32be0d42348
relation.isAuthorOfPublication.latestForDiscovery fc428ec9-7ded-49de-98b3-c32be0d42348
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication.latestForDiscovery a6e60d5c-b0c7-474a-b49b-284dc710c078

Files