Large-Scale Influence Maximization Via Maximal Covering Location
| dc.contributor.author | Güney, Evren | |
| dc.contributor.author | Ruthmair, Mario | |
| dc.contributor.author | Sinnl, Markus | |
| dc.contributor.author | Leitner, Markus | |
| dc.date.accessioned | 2020-07-29T07:41:26Z | |
| dc.date.available | 2020-07-29T07:41:26Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | Influence maximization aims at identifying a limited set of key individuals in a (social) network which spreads information based on some propagation model and maximizes the number of individuals reached. We show that influence maximization based on the probabilistic independent cascade model can be modeled as a stochastic maximal covering location problem. A reformulation based on Benders decomposition is proposed and a relation between obtained Benders optimality cuts and submodular cuts for correspondingly defined subsets is established. We introduce preprocessing tests, which allow us to remove variables from the model and develop efficient algorithms for the separation of Benders cuts. Both aspects are shown to be crucial ingredients of the developed branch-and-cut algorithm since real-life social network instances may be very large. In a computational study, the considered variants of this branch-and-cut algorithm outperform the state-of-the-art approach for influence maximization by orders of magnitude. | |
| dc.identifier.citation | Güney, E., Leitner, M., Ruthmair, M., & Sinnl, M. (January 01, 2020). Large-scale influence maximization via maximal covering location. European Journal of Operational Research. | |
| dc.identifier.doi | 10.1016/j.ejor.2020.06.028 | |
| dc.identifier.issn | 0377-2217 | |
| dc.identifier.scopus | 2-s2.0-85087780570 | |
| dc.identifier.uri | https://doi.org/10.1016/j.ejor.2020.06.028 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.11779/1343 | |
| dc.language.iso | en | |
| dc.publisher | Elsevier | |
| dc.relation.ispartof | European Journal of Operational Research | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Large scale optimization | |
| dc.subject | Networks | |
| dc.subject | Integer programming | |
| dc.subject | Influence maximization | |
| dc.subject | Stochastic programming | |
| dc.title | Large-Scale Influence Maximization Via Maximal Covering Location | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| gdc.author.id | Evren Güney / 0000-0001-7572-8627 | |
| gdc.author.institutional | Güney, Evren | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü | |
| gdc.description.endpage | 164 | |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 144 | |
| gdc.description.volume | 289 | |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3037635596 | |
| gdc.identifier.wos | WOS:000577998100011 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | HYBRID | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 27.0 | |
| gdc.oaire.influence | 3.8611248E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | DYNAMICS | |
| gdc.oaire.keywords | ISOR | |
| gdc.oaire.keywords | 101016 Optimisation | |
| gdc.oaire.keywords | Stochastic programming | |
| gdc.oaire.keywords | Integer programming | |
| gdc.oaire.keywords | MR | |
| gdc.oaire.keywords | Influence maximization | |
| gdc.oaire.keywords | 101015 Operations Research | |
| gdc.oaire.keywords | BENDERS DECOMPOSITION | |
| gdc.oaire.keywords | Cat2 | |
| gdc.oaire.keywords | 101015 Operations research | |
| gdc.oaire.keywords | NETWORK | |
| gdc.oaire.keywords | Networks | |
| gdc.oaire.keywords | 101016 Optimierung | |
| gdc.oaire.keywords | Large scale optimization | |
| gdc.oaire.popularity | 2.7522717E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0211 other engineering and technologies | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 3.53939248 | |
| gdc.openalex.normalizedpercentile | 0.93 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 29 | |
| gdc.plumx.crossrefcites | 32 | |
| gdc.plumx.mendeley | 29 | |
| gdc.plumx.scopuscites | 33 | |
| gdc.publishedmonth | Ocak | |
| gdc.scopus.citedcount | 33 | |
| gdc.virtual.author | Güney, Evren | |
| gdc.wos.citedcount | 31 | |
| gdc.wos.collaboration | Uluslararası işbirliği ile yapılan - EVET | |
| gdc.wos.documenttype | Article | |
| gdc.wos.indexdate | 2021 | |
| gdc.wos.publishedmonth | Aralık | |
| gdc.yokperiod | YÖK - 2020-21 | |
| relation.isAuthorOfPublication | 6cd6fa8d-207e-4ab4-a977-c3a42684f2d1 | |
| relation.isAuthorOfPublication.latestForDiscovery | 6cd6fa8d-207e-4ab4-a977-c3a42684f2d1 | |
| relation.isOrgUnitOfPublication | 636850bf-e58c-4b59-bcf0-fa7418bb7977 | |
| relation.isOrgUnitOfPublication | 0d54cd31-4133-46d5-b5cc-280b2c077ac3 | |
| relation.isOrgUnitOfPublication | a6e60d5c-b0c7-474a-b49b-284dc710c078 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 636850bf-e58c-4b59-bcf0-fa7418bb7977 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Evren_Guney.pdf
- Size:
- 1.53 MB
- Format:
- Adobe Portable Document Format
- Description:
- Tam Metin / Full Text
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.44 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
