Carbon Price Forecasting Models Based on Big Data Analytics

dc.contributor.author Çanakoğlu, Ethem
dc.contributor.author Ağralı, Semra
dc.contributor.author Yahşi, Mustafa
dc.date.accessioned 2019-05-20T08:08:55Z
dc.date.available 2019-05-20T08:08:55Z
dc.date.issued 2019
dc.description.abstract After the establishment of the European Union's Emissions Trading System (EU-ETS) carbon pricing attracted many researchers. This paper aims to develop a prediction model that anticipates future carbon prices given a real-world data set. We treat the carbon pricing issue as part of big data analytics to achieve this goal. We apply three fundamental methodologies to characterize the carbon price. First method is the artificial neural network, which mimics the principle of human brain to process relevant data. As a second approach, we apply the decision tree algorithm. This algorithm is structured through making multiple binary decisions, and it is mostly used for classification. We employ two different decision tree algorithms, namely traditional and conditional, to determine the type of decision tree that gives better results in terms of prediction. Finally, we exploit the random forest, which is a more complex algorithm compared to the decision tree. Similar to the decision tree, we test both traditional and conditional random forest algorithms to analyze their performances. We use Brent crude futures, coal, electricity and natural gas prices, and DAX and S&P Clean Energy Index as explanatory variables. We analyze the variables' effects on carbon price forecasting. According to our results, S&P Clean Energy Index is the most influential variable in explaining the changes in carbon price, followed by DAX Index and coal price. Moreover, we conclude that the traditional random forest is the best algorithm based on all indicators. We provide the details of these methods and their comparisons.
dc.identifier.citation Yahsi, M., Canakoglu, E., & Agrali, S. (February, 2019) Carbon price forecasting models based on big data analytics, Carbon Management, 10:2, 175-187, DOI: 10.1080/17583004.2019.1568138
dc.identifier.doi 10.1080/17583004.2019.1568138
dc.identifier.issn 1758-3012
dc.identifier.issn 1758-3004
dc.identifier.scopus 2-s2.0-85065429258
dc.identifier.uri https://doi.org/10.1080/17583004.2019.1568138
dc.identifier.uri https://hdl.handle.net/20.500.11779/1084
dc.language.iso en
dc.publisher Taylor and Francis Ltd.
dc.relation.ispartof Carbon Management
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Decision tree
dc.subject Random forest
dc.subject Artificial neural network
dc.subject Forecasts
dc.subject Big data
dc.subject Carbon price
dc.title Carbon Price Forecasting Models Based on Big Data Analytics
dc.type Article
dspace.entity.type Publication
gdc.author.institutional Ağralı, Semra
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü
gdc.description.endpage 187
gdc.description.issue 2
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
gdc.description.scopusquality Q2
gdc.description.startpage 175
gdc.description.volume 10
gdc.description.woscitationindex Science Citation Index Expanded - Social Science Citation Index
gdc.description.wosquality Q2
gdc.identifier.openalex W2913219845
gdc.identifier.wos WOS:000468369600006
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 16.0
gdc.oaire.influence 4.9322515E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Environmental sciences
gdc.oaire.keywords carbon price
gdc.oaire.keywords big data
gdc.oaire.keywords forecasts
gdc.oaire.keywords decision tree
gdc.oaire.keywords GE1-350
gdc.oaire.keywords artificial neural network
gdc.oaire.keywords random forest
gdc.oaire.popularity 4.5594206E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 2.27505133
gdc.openalex.normalizedpercentile 0.88
gdc.opencitations.count 52
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 64
gdc.plumx.scopuscites 64
gdc.publishedmonth Şubat
gdc.scopus.citedcount 65
gdc.virtual.author Ağralı, Semra
gdc.wos.citedcount 61
gdc.wos.collaboration Uluslararası işbirliği ile yapılmayan - HAYIR
gdc.wos.documenttype Article
gdc.wos.indexdate 2019
gdc.wos.publishedmonth Şubat
gdc.yokperiod YÖK - 2018-19
relation.isAuthorOfPublication 19985ef7-cac2-4d80-be52-69d3716c5d30
relation.isAuthorOfPublication.latestForDiscovery 19985ef7-cac2-4d80-be52-69d3716c5d30
relation.isOrgUnitOfPublication 636850bf-e58c-4b59-bcf0-fa7418bb7977
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 636850bf-e58c-4b59-bcf0-fa7418bb7977

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Carbon price forecasting models based on big data analytics.pdf
Size:
3.5 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı Sürümü - Makale

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: