Methane Emissions Forecasting Using Hybrid Quantum-Classical Deep Learning Models: Case Study of North Africa

dc.contributor.author Belkadi, Widad Hassina
dc.contributor.author Drias, Yassine
dc.contributor.author Drias, Habiba
dc.contributor.author Ferkous, Sarah
dc.contributor.author Khemissi, Maroua
dc.date.accessioned 2025-12-05T17:07:57Z
dc.date.available 2025-12-05T17:07:57Z
dc.date.issued 2025
dc.description.abstract This study explores climate change by predicting methane emissions in North Africa using classical and quantum deep learning methods. Using data from Sentinel-5P, we developed hybrid quantum-classical models, such as quantum long short-term memory (QLSTM) and quantum-gated recurrent unit networks (QGRUs), along with a novel hybrid architecture combining quantum convolutional neural networks (QCNNs) with LSTM and GRU, namely QCNN-LSTM and QCNN-GRU. The results show that these quantum models, especially the proposed hybrid architectures, outperform classical models by approximately seven percent in root-mean-squared error with fewer training epochs. These findings highlight the potential of quantum methodologies for enhancing environmental monitoring accuracy. Future research will aim to refine model performance, incorporate explainable AI techniques, and expand to forecasting other greenhouse gases, contributing to climate change mitigation efforts. en_US
dc.description.sponsorship Directorate General for Scientific Research and Technological Development (DGRSDT) [C0662300] en_US
dc.description.sponsorship We would like to express our special gratitude to the Directorate General for Scientific Research and Technological Development (DGRSDT) for supporting this work under grant number C0662300. en_US
dc.identifier.doi 10.1007/s11128-025-04979-0
dc.identifier.issn 1570-0755
dc.identifier.issn 1573-1332
dc.identifier.scopus 2-s2.0-105020378635
dc.identifier.uri https://doi.org/10.1007/s11128-025-04979-0
dc.identifier.uri https://hdl.handle.net/20.500.11779/3139
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Quantum Information Processing en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Quantum Machine Learning en_US
dc.subject 1D-QCNN en_US
dc.subject QLSTM en_US
dc.subject QGRU en_US
dc.subject Climate Change en_US
dc.subject Methane Emissions en_US
dc.title Methane Emissions Forecasting Using Hybrid Quantum-Classical Deep Learning Models: Case Study of North Africa
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Drias, Yassine
gdc.author.scopusid 58478811000
gdc.author.scopusid 56440023300
gdc.author.scopusid 11538926200
gdc.author.scopusid 60164435800
gdc.author.scopusid 60164435900
gdc.author.wosid Drias, Yassine/Aad-4014-2019
gdc.description.department Mef University en_US
gdc.description.departmenttemp [Belkadi, Widad Hassina; Drias, Habiba] USTHB, LRIA, BP 32 Alia, Algiers 16111, Algeria; [Drias, Yassine] MEF Univ, Istanbul, Turkiye; [Ferkous, Sarah] USTHB, BP 32 El Alia, Algiers 16111, Algeria; [Khemissi, Maroua] Univ Ctr Barika, Lab Sci Math Comp Sci & Engn Applicat, Amdoukal Rd, Barika 05001, Algeria en_US
gdc.description.issue 11 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 24 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.wos WOS:001604859500001
relation.isAuthorOfPublication fc428ec9-7ded-49de-98b3-c32be0d42348
relation.isAuthorOfPublication.latestForDiscovery fc428ec9-7ded-49de-98b3-c32be0d42348
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication.latestForDiscovery a6e60d5c-b0c7-474a-b49b-284dc710c078

Files