Quantum Approaches To the 0/1 Multi-Knapsack Problem: Qubo Formulation, Penalty Parameter Characterization and Analysis
| dc.contributor.author | Güney, Evren | |
| dc.contributor.author | Ehrenthal, J. | |
| dc.contributor.author | Hanne, T. | |
| dc.date.accessioned | 2025-05-05T19:42:55Z | |
| dc.date.available | 2025-05-05T19:42:55Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | The 0/1 Multi-Knapsack Problem (MKP) is a combinatorial optimization problem with applications in lo gistics, finance, and resource management. Advances in quantum computing have enabled the exploration of problems like the 0/1 MKP through Quadratic Unconstrained Binary Optimization (QUBO) formulations. This work develops QUBO formulations for the 0/1 MKP, with a focus on optimizing penalty parameters for encoding constraints. Using simulation experiments across quantum platforms, we evaluate the feasibility of solving small-scale instances of the 0/1 MKP. The results provide insights into the challenges and opportuni ties associated with applying quantum optimization methods for constrained resource allocation problems. © 2025 by SCITEPRESS– Science and Technology Publications, Lda. | |
| dc.identifier.doi | 10.5220/0013387700003890 | |
| dc.identifier.issn | 2184-3589 | |
| dc.identifier.scopus | 2-s2.0-105001685734 | |
| dc.identifier.uri | https://doi.org/10.5220/0013387700003890 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.11779/2574 | |
| dc.language.iso | en | |
| dc.publisher | Science and Technology Publications, Lda | |
| dc.relation.ispartof | International Conference on Agents and Artificial Intelligence -- 17th International Conference on Agents and Artificial Intelligence, ICAART 2025 -- 23 February 2025 through 25 February 2025 -- Porto -- 328949 | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Gate-Based Quantum Computing | |
| dc.subject | Multi-Knapsack Problem | |
| dc.subject | Quadratic Unconstrained Binary Optimization | |
| dc.subject | Quantum Annealing | |
| dc.subject | Quantum Approximate Optimization Algorithm | |
| dc.subject | Quantum Simulation | |
| dc.title | Quantum Approaches To the 0/1 Multi-Knapsack Problem: Qubo Formulation, Penalty Parameter Characterization and Analysis | |
| dc.type | Conference Object | |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Güney, Evren | |
| gdc.author.scopusid | 24080435200 | |
| gdc.author.scopusid | 55573294200 | |
| gdc.author.scopusid | 6602279467 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.description.department | Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü | |
| gdc.description.endpage | 823 | |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
| gdc.description.scopusquality | Q4 | |
| gdc.description.startpage | 815 | |
| gdc.description.volume | 1 | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W4408063211 | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.5942106E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 2.0809511E-10 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.04 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.publishedmonth | Mart | |
| gdc.scopus.citedcount | 0 | |
| gdc.virtual.author | Güney, Evren | |
| gdc.wos.publishedmonth | Mart | |
| gdc.yokperiod | YÖK - 2024-25 | |
| relation.isAuthorOfPublication | 6cd6fa8d-207e-4ab4-a977-c3a42684f2d1 | |
| relation.isAuthorOfPublication.latestForDiscovery | 6cd6fa8d-207e-4ab4-a977-c3a42684f2d1 | |
| relation.isOrgUnitOfPublication | 636850bf-e58c-4b59-bcf0-fa7418bb7977 | |
| relation.isOrgUnitOfPublication | 0d54cd31-4133-46d5-b5cc-280b2c077ac3 | |
| relation.isOrgUnitOfPublication | a6e60d5c-b0c7-474a-b49b-284dc710c078 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 636850bf-e58c-4b59-bcf0-fa7418bb7977 |
