Bidirectional Recurrent Neural Network Language Models for Automatic Speech Recognition

dc.contributor.author Chen, Stanley
dc.contributor.author Sethy, Abhinav
dc.contributor.author Ramabhadran, Bhuvana
dc.contributor.author Arısoy, Ebru
dc.date.accessioned 2019-02-28T13:04:26Z
dc.date.accessioned 2019-02-28T11:08:19Z
dc.date.available 2019-02-28T13:04:26Z
dc.date.available 2019-02-28T11:08:19Z
dc.date.issued 2015
dc.description ##nofulltext##
dc.description Ebru Arısoy (MEF Author)
dc.description.WoSDocumentType Proceedings Paper
dc.description.WoSIndexDate 2015
dc.description.abstract Recurrent neural network language models have enjoyed great success in speech recognition, partially due to their ability to model longer-distance context than word n-gram models. In recurrent neural networks (RNNs), contextual information from past inputs is modeled with the help of recurrent connections at the hidden layer, while Long Short-Term Memory (LSTM) neural networks are RNNs that contain units that can store values for arbitrary amounts of time. While conventional unidirectional networks predict outputs from only past inputs, one can build bidirectional networks that also condition on future inputs. In this paper, we propose applying bidirectional RNNs and LSTM neural networks to language modeling for speech recognition. We discuss issues that arise when utilizing bidirectional models for speech, and compare unidirectional and bidirectional models on an English Broadcast News transcription task. We find that bidirectional RNNs significantly outperform unidirectional RNNs, but bidirectional LSTMs do not provide any further gain over their unidirectional counterparts.
dc.identifier.citation Arisoy, E., Sethy, A., Ramabhadran, B., Chen, S., (APR 19-24, 2015 ). Bidirectional recurrent neural network language models for automatic speech recognition. 40th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) Location: Brisbane, AUSTRALIA. 5421-5425.
dc.identifier.issn 1520-6149
dc.identifier.uri https://hdl.handle.net/20.500.11779/705
dc.language.iso en
dc.relation.ispartof Conference: 40th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) Location: Brisbane, AUSTRALIA Date: APR 19-24, 2015
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Long short term memory
dc.subject Bidirectional neural networks
dc.subject Language modeling
dc.subject Recurrent neural networks
dc.title Bidirectional Recurrent Neural Network Language Models for Automatic Speech Recognition
dc.type Conference Object
dspace.entity.type Publication
gdc.author.institutional Arısoy, Ebru
gdc.author.institutional Arısoy Saraçlar, Ebru
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü
gdc.description.endpage 5425
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 5421
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.wos WOS:000427402905108
gdc.publishedmonth Nisan
gdc.wos.citedcount 58
gdc.wos.publishedmonth Nisan
gdc.wos.yokperiod YÖK - 2014-15
relation.isAuthorOfPublication 0b895153-5793-4e46-bc2f-06a28b30f531
relation.isAuthorOfPublication.latestForDiscovery 0b895153-5793-4e46-bc2f-06a28b30f531
relation.isOrgUnitOfPublication de19334f-6a5b-4f7b-9410-9433c48d1e5a
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery de19334f-6a5b-4f7b-9410-9433c48d1e5a

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: