Forecasting With Ensemble Methods: an Application Using Fashion Retail Sales Data

Loading...
Thumbnail Image

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

MEF Üniversitesi, Fen Bilimleri Enstitüsü

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

In this project, ensemble methods of machine learning are used to predict short term store sales of a fashion retailer. Sales forecasts of various products at different stores are generated for a span of three months with bagging tree regressor, random forest regressor, and gradient boosting regressor algorithm. Algorithms are trained and evaluated with real past sales data of a Turkish fashion retailer. The predictive performance of the models is compared with linear regression. The results of the study show that random forest regressor shows the best performance
Bu projede topluluk metotları ile bir hazır giyim şirketininin mağazalarının satışı tahmin edilmiştir. Çeşitli ürünlerin farklı mağazalardaki satışının tahminleri, sonraki üç ay için torbalama-regresyon ağaçları, rassal orman regresyonu ve gradyan artırma regresyon ağaçları algoritmaları kullanarak üretilmiştir. Algoritmalar gerçek geçmiş satış verileri kullanılarak eğitilip, performansları değerlendirilmiştir. Algoritmaların tahmin performansı doğrusal regresyonla karşılaştırılmıştır. Çalışmanın sonuçlarına göre rassal orman regresyonu en yüksek performansı göstermiştir.

Description

Keywords

Time Series Analysis, Sales Forecasting, Ensemble Methods, Bagging Tree Regressor, Random Forest Regressor, Gradient Boosted Regression Tree, Linear Regression, Zaman Serisi Analizi, Satış Tahmini, Torbalama-Regresyon Ağaçları, Rassal Orman Regresyonu, Gradyan Artırma Regresyon Ağaçları, Doğrusal Regresyon

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Yüzbaşıoğlu, OB. (2019). Forecasting with Ensemble Methods: An Application Using Fashion Retail Sales Data, MEF Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye

WoS Q

N/A

Scopus Q

N/A

Source

Volume

Issue

Start Page

End Page

Page Views

182

checked on Dec 15, 2025

Downloads

113

checked on Dec 15, 2025

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

SDG data is not available