A Case Study on Churn Prediction and Understanding Customer Behavior

dc.contributor.advisor Tönük, Gökçe
dc.contributor.author Kıralı, Gülşen
dc.date.accessioned 2019-11-12T13:42:01Z
dc.date.available 2019-11-12T13:42:01Z
dc.date.issued 2018
dc.description.abstract Churn prediction is essential for businesses as it helps to detect customers who have the potential to cancel a subscription to a product or service. Churn prediction techniques try to understand the certain customer behaviors and attributes which signal the risk andtiming of customer churn. Companies started to focus on retention activities more in the last years since holding current customer in the system is less costly when compared with acquiring new ones. In order to allocate costs to right customers, companies prefer to use the big part of these budget to potential churn customers which makes the accuracy of churn detection important for us. The objective of this project is to develop a machine learning algorithm that predicts potential churn customers that will not make any transactions in the following three months. While predicting churn, some customer segments and subsegments are created in order to understand the common behavior of potential churn customers. Common characteristics of loyal customers will also beinvestigated in order to determine churn prevention marketing activities for potential churn customers. Among all of the machine learning algorithm trials including Logistic Regression, Boosted Decision Tree, Support Vector Machines, Decision Forest, Decision Forest Regression and Neural Networks, Logistic Regression predicts with the highest accuracy and lowest number of False Negative which means model slightly mistaken unchurned customers.
dc.description.abstract Müşteri ayrılma tahminleri, bir ürün veya hizmete aboneliği iptal etme potansiyeline sahip müşterileri tespit etmeye yardımcı olduğu için günümüzde çok önem kazanmaya başlamıştır. Müşteri ayrılma tahminleri, müşteri kaybının riskini ve zamanlamasını yansıtan belirli müşteri davranışlarını ve niteliklerini anlamaya çalışır. Mevcut müşterileri sistemde tutmak, yeni müşteri kazanmaya kıyasla daha az maliyetli olduğundan son yıllarda şirketler elde tutma faaliyetlerine odaklanmaya başlamıştır. Şirketler, oldukça maliyetli olan bu aktiviteleri doğru müşterilere uygulamak için bütçelerinin büyük bölümünü, ayrılma potansiyeli yüksek müşterilere kullanmayı tercih etmektedirler, bu da şirketler için ayrılma tahmininin doğruluğunun önemini ortaya koymaktadır. Projenin amacı belirli bir şirket müşteri verisi kullanılarak takip eden üç ay içinde işlem yapmayacak ve ayrılacak müşterileri tahmin etmektir. Müşteri ayrılma tahmini yapılırken, alışveriş alışkanlıklarına dayalı gruplar oluşturularak ayrılan müşterilerin ortak özellikleri anlaşılmaya çalışılmıştır. Ayrılma ihtimali olan müşterilere yönelik pazarlama aktivitelerini belirlemek için aynı zamanda sadık müşterilerin ortak davranışları incelenmiştir. Projede Güçlendirilmiş Karar Ağacı, Destek Vektör Makineleri, Rastgele Ormanlar, Rastgele Ormanlar Regresyonu ve Yapay Sinir Ağları algoritmaları denenmiştir. Lojistik Regresyon modeli ile en yüksek doğruluk oranına ulaşılmış ve ayrılmayacak müşterileri yanlış tahmin adedi en düşük düzeyde gerçekleşmiştir.
dc.identifier.citation Kıralı, G. (2018). A case study on churn prediction and understanding customer behavior, MEF Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye
dc.identifier.uri https://hdl.handle.net/20.500.11779/1182
dc.language.iso en
dc.publisher MEF Üniversitesi, Fen Bilimleri Enstitüsü
dc.rights info:eu-repo/semantics/openAccess
dc.subject Churn
dc.subject Churn Prediction
dc.subject Customer Behavior
dc.subject Purchase Attributes
dc.subject Machine Learning Algorithms
dc.subject Müşteri Kaybı
dc.subject Müşteri Kaybı Tahmini
dc.subject Müşteri Davranışları
dc.subject Satınalma Özellikleri
dc.subject Makine Öğrenme Algoritmaları
dc.title A Case Study on Churn Prediction and Understanding Customer Behavior
dc.title.alternative Müşteri davranışlarının anlaşılması ve ayrılma tahminine yönelik vaka analizi
dc.type Master's Degree Project
dspace.entity.type Publication
gdc.author.id Gökçe Tönük / 0000-0002-9789-0569
gdc.author.institutional Kıralı, Gülşen
gdc.author.institutional Tönük, Gökçe
gdc.coar.access open access
gdc.coar.type text::thesis::master thesis
gdc.description.department Lisansüstü Eğitim Enstitüsü, Büyük Veri Analitiği Yüksek Lisans Programı
gdc.description.publicationcategory YL-Bitirme Projesi
gdc.description.scopusquality N/A
gdc.description.wosquality N/A
relation.isAuthorOfPublication 304bcf01-208f-45f8-a92f-eec5df6562a3
relation.isAuthorOfPublication.latestForDiscovery 304bcf01-208f-45f8-a92f-eec5df6562a3
relation.isOrgUnitOfPublication c90327d7-cf5a-4775-a458-1dbb7ea10e32
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery c90327d7-cf5a-4775-a458-1dbb7ea10e32

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GülşenKıralı.pdf
Size:
4 MB
Format:
Adobe Portable Document Format
Description:
YL- PROJE DOSYASI

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: