Predicting Cash Holdings Using Supervised Machine Learning Algorithms

dc.contributor.author Özlem, Şirin
dc.contributor.author Tan, Ömer Faruk
dc.date.accessioned 2022-05-26T11:51:12Z
dc.date.available 2022-05-26T11:51:12Z
dc.date.issued 2022
dc.description.abstract This study predicts the cash holdings policy of Turkish firms, given the 20 selected features with machine learning algorithm methods. 211 listed firms in the Borsa Istanbul are analyzed over the period between 2006 and 2019. Multiple linear regression (MLR), k-nearest neighbors (KNN), support vector regression (SVR), decision trees (DT), extreme gradient boosting algorithm (XGBoost) and multi-layer neural networks (MLNN) are used for prediction. Results reveal that MLR, KNN, and SVR provide high root mean square error (RMSE) and low R2 values. Meanwhile, more complex algorithms, such as DT and especially XGBoost, derive higher accuracy with a 0.73 R2 value. Therefore, using advanced machine learning algorithms, we may predict cash holdings considerably.
dc.identifier.citation Ozlem, S., & Tan, O. F. (May 2022). Predicting cash holdings using supervised machine learning algorithms. Financial Innovation, 8(1), pp.1-19. https://doi.org/10.1186/s40854-022-00351-8
dc.identifier.doi 10.1186/s40854-022-00351-8
dc.identifier.issn 2199-4730
dc.identifier.scopus 2-s2.0-85130279042
dc.identifier.uri https://doi.org/10.1186/s40854-022-00351-8
dc.identifier.uri https://hdl.handle.net/20.500.11779/1780
dc.language.iso en
dc.publisher Springer
dc.relation.ispartof Financial Innovation
dc.rights info:eu-repo/semantics/openAccess
dc.subject Xgboost
dc.subject Machine learning
dc.subject Turkey
dc.subject Cash holdings
dc.subject Mlnn
dc.title Predicting Cash Holdings Using Supervised Machine Learning Algorithms
dc.type Article
dspace.entity.type Publication
gdc.author.id Şirin Özlem / 0000-0001-7248-1825
gdc.author.id Ömer Faruk Tan / 0000-0002-8875-4696
gdc.author.institutional Özlem, Şirin
gdc.author.institutional Tan, Ömer Faruk
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü
gdc.description.endpage 19
gdc.description.issue 1
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
gdc.description.scopusquality Q1
gdc.description.startpage 1
gdc.description.volume 8
gdc.description.woscitationindex Social Science Citation Index
gdc.description.wosquality Q1
gdc.identifier.openalex W4280571531
gdc.identifier.pmid 35601748
gdc.identifier.wos WOS:000796993600001
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 7.0
gdc.oaire.influence 2.9823566E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Social Sciences and Humanities
gdc.oaire.keywords İşletme, Yönetim ve Muhasebe (çeşitli)
gdc.oaire.keywords Social Sciences (SOC)
gdc.oaire.keywords Turkey
gdc.oaire.keywords Sosyal Bilimler ve Beşeri Bilimler
gdc.oaire.keywords CORPORATE
gdc.oaire.keywords DETERMINANTS
gdc.oaire.keywords Cash holdings
gdc.oaire.keywords K4430-4675
gdc.oaire.keywords Sociology
gdc.oaire.keywords MLNN
gdc.oaire.keywords Finans
gdc.oaire.keywords General Social Sciences
gdc.oaire.keywords FINANCIAL CRISIS
gdc.oaire.keywords POLICY
gdc.oaire.keywords Labor Economics and Industrial Relations
gdc.oaire.keywords INSIGHTS
gdc.oaire.keywords Çalışma Ekonomisi
gdc.oaire.keywords HG1-9999
gdc.oaire.keywords Ekonomi ve İş
gdc.oaire.keywords ECONOMICS & BUSINESS
gdc.oaire.keywords Sosyal Bilimler (SOC)
gdc.oaire.keywords Business, Management and Accounting (miscellaneous)
gdc.oaire.keywords SOSYAL BİLİMLER, MATEMATİK YÖNTEMLER
gdc.oaire.keywords AGENCY COSTS
gdc.oaire.keywords BEHAVIOR
gdc.oaire.keywords SOCIAL SCIENCES, MATHEMATICAL METHODS
gdc.oaire.keywords SOCIAL SCIENCES, GENERAL
gdc.oaire.keywords FIRMS HOLD
gdc.oaire.keywords CREDIT
gdc.oaire.keywords PRICES
gdc.oaire.keywords Accounting
gdc.oaire.keywords Machine learning
gdc.oaire.keywords Genel Sosyal Bilimler
gdc.oaire.keywords Sosyal ve Beşeri Bilimler
gdc.oaire.keywords Social Sciences & Humanities
gdc.oaire.keywords Çalışma Ekonomisi ve Endüstri ilişkileri
gdc.oaire.keywords Sosyoloji
gdc.oaire.keywords Research
gdc.oaire.keywords Cash holdings
gdc.oaire.keywords Sosyal Bilimler Genel
gdc.oaire.keywords Public finance
gdc.oaire.keywords Labor Economics
gdc.oaire.keywords Muhasebe
gdc.oaire.keywords İŞ FİNANSI
gdc.oaire.keywords BUSINESS, FINANCE
gdc.oaire.keywords Finance
gdc.oaire.keywords XGBoost
gdc.oaire.popularity 4.071173E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 05 social sciences
gdc.oaire.sciencefields 0502 economics and business
gdc.openalex.collaboration National
gdc.openalex.fwci 4.8109367
gdc.openalex.normalizedpercentile 0.94
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 6
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 63
gdc.plumx.pubmedcites 1
gdc.plumx.scopuscites 10
gdc.publishedmonth Mayıs
gdc.relation.journal Financial Innovation
gdc.scopus.citedcount 10
gdc.virtual.author Tan, Ömer Faruk
gdc.virtual.author Özlem, Şirin
gdc.wos.citedcount 5
gdc.wos.collaboration Uluslararası işbirliği ile yapılmayan - HAYIR
gdc.wos.documenttype Article
gdc.wos.indexdate 2022
gdc.wos.publishedmonth Mayıs
gdc.yokperiod YÖK - 2021-22
relation.isAuthorOfPublication 522da3cd-dd14-4e38-9608-5bf5034982de
relation.isAuthorOfPublication 8dc3d5ee-f7f1-4e1a-963b-2315897f3832
relation.isAuthorOfPublication.latestForDiscovery 522da3cd-dd14-4e38-9608-5bf5034982de
relation.isOrgUnitOfPublication 5664fa6c-ff72-48d2-8431-5b401dcf7a5f
relation.isOrgUnitOfPublication 636850bf-e58c-4b59-bcf0-fa7418bb7977
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 5664fa6c-ff72-48d2-8431-5b401dcf7a5f

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
40854_2022_Article_351.pdf
Size:
1.53 MB
Format:
Adobe Portable Document Format
Description:
Full Text - Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: