Churn Prediction of a Deal E-Commerce Website Customers

dc.contributor.advisor Küçükaydın, Hande
dc.contributor.author Çevik, Müge
dc.date.accessioned 2019-11-12T13:41:58Z
dc.date.available 2019-11-12T13:41:58Z
dc.date.issued 2017
dc.description.abstract Today, there is a lot of deal e-commerce sites which are essentially marketplaces. They provide deals which are offered by merchandisers. Because of the nature of these sites there is no subscription model; customers continue because of price or interest or quality not because of subscription. It is normal to have some customers who stop buying, which is defined by "churn". Data mining is now a new technique to define "churned" customers and to have prediction who will churn and what should be against. In this project customers are clustered via unsupervised clustering technique for clusters as "newly purchased", "frequently purchased" and "mostly payed" and "churned". Random Forest Classifier is used to prove that the "churned" customer clusters have homogeneous character and also it has been proved that the "churned" labelled customers have actually no deal order after the observed time period. To recommend what should be done to regain the churned customers to the site the deal order history of these customers have been explored and the deal categories from which they have bought have been found.
dc.description.abstract Bugün, temelde bir pazar yeri olan birçok fırsat e-ticaret sitesi var. Bu siteler mağazaların ve dükkanların sundukları fırsatlar gösterirler. Bu sitelerin doğası gereği abonelik modeli yoktur, müşteriler fiyat veya ilgi veya kalite nedeniyle kalır, abonelik nedeniyle değil. Bazı müşterilerin alışverişi bırakması normaldir ki bunlar "kaybedilmiş" olarak tanımlanır. Veri madenciliği teknikleri, "kaybedilmiş" müşterileri tanımlamak, hangi müşterilerin "kaybedileceğini" tahmin etmek ve buna karşı ne yapılması gerektiğini bulmak için yakın zamanlarda kullanılmaya başlanmıştır. Bu projede, müşteriler denetimsiz kümeleme tekniği kullanılarak "yeni satın almış", "sık satın almış" ve "en çok para ödenmiş" ve "kaybedilmiş müşteri" kümelerine bölünmüştür. Kaybedilmiş müşteri sınıflarının karakteristiğinin homojen olduğunu kanıtlamak için Rastgele Orman Sınıflandırıcısı kullanılmıştır, ayrıca "kaybedilmiş müşteri" etiketli müşterilerin gözlem yapılan zaman periyodu sonrasında hiçbir fırsat satın alımı gerçekleştirmediği de ispatlanmıştır. Bu projede, "kaybedilmiş" müşterileri siteye geri kazanmak üzere ne yapılması gerektiğini önermek için, bu müşterilerin fırsat sipariş geçmişleri keşfedilmiş ve satın aldıkları fırsatların kategorileri bulunmuştur.
dc.identifier.citation Çevik, M. (2017). Churn prediction of a deal e-commerce website customers, MEF Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye
dc.identifier.uri https://hdl.handle.net/20.500.11779/1152
dc.language.iso en
dc.publisher MEF Üniversitesi, Fen Bilimleri Enstitüsü
dc.rights info:eu-repo/semantics/openAccess
dc.subject Data Mining
dc.subject E-commerce Churn
dc.subject Unsupervised Clustering
dc.subject Random Forest Classification
dc.subject Visualisation of Data
dc.subject Veri Madenciliği
dc.subject E-ticarette Kaybedilmiş Müşteri
dc.subject Denetimsiz Kümeleme
dc.subject Rastgele Orman Sınıflandırıcısı
dc.subject Veri Görselleştirme
dc.title Churn Prediction of a Deal E-Commerce Website Customers
dc.title.alternative Bir fırsat e-ticaret sitesinin kaybedilmiş müşteri tahmini
dc.type Master's Degree Project
dspace.entity.type Publication
gdc.author.institutional Çevik, Müge
gdc.author.institutional Küçükaydın, Hande
gdc.coar.access open access
gdc.coar.type text::thesis::master thesis
gdc.description.department Lisansüstü Eğitim Enstitüsü, Büyük Veri Analitiği Yüksek Lisans Programı
gdc.description.publicationcategory YL-Bitirme Projesi
gdc.description.scopusquality N/A
gdc.description.wosquality N/A
relation.isAuthorOfPublication dd669147-971f-4d2a-af0a-4e0e8aa9bd94
relation.isAuthorOfPublication.latestForDiscovery dd669147-971f-4d2a-af0a-4e0e8aa9bd94
relation.isOrgUnitOfPublication 636850bf-e58c-4b59-bcf0-fa7418bb7977
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 636850bf-e58c-4b59-bcf0-fa7418bb7977

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MügeÇevik.pdf
Size:
13.71 MB
Format:
Adobe Portable Document Format
Description:
YL-Proje Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: