AI-Driven Digital Soil Mapping: Leveraging Generative AI, Ensemble Learning and Geospatial Technologies for Data-Scarce Regions

dc.contributor.author Drias, Yassine
dc.contributor.author Drias, Habiba
dc.contributor.author Belkadi, Widad Hassina
dc.contributor.author Cakar, Tuna
dc.contributor.author Abdelhamid, Zakaria
dc.contributor.author Bensemmane, Riad Yacine
dc.date.accessioned 2025-09-05T15:47:39Z
dc.date.available 2025-09-05T15:47:39Z
dc.date.issued 2025
dc.description.abstract This study presents a methodology for generating highresolution digital soil maps by integrating artificial intelligence (AI) with geospatial technologies. The research begins with comprehensive data collection and the extraction of relevant soil properties with the help of generative AI. To improve predictive accuracy, ensemble learning algorithms were employed due to their ability to capture complex relationships within soil characteristics. Additionally, a structured preprocessing pipeline was developed to refine and standardize the collected soil data, ensuring its suitability for modeling. The model's performance was evaluated using spatial cross-validation techniques to identify the most effective predictive approach. To validate the proposed methodology, experiments were conducted in northern Algeria, a region characterized by diverse landscapes ranging from arid zones to fertile plains. The results demonstrate the potential of AI-driven approaches to enhance soil mapping, particularly in regions where high-quality and up-to-date soil data are limited. This study underscores the efficacy of AI and geospatial technologies in advancing precision agriculture and land management. en_US
dc.identifier.doi 10.1007/978-3-031-98565-2_72
dc.identifier.isbn 9783031985645
dc.identifier.isbn 9783031985652
dc.identifier.isbn 9789819652372
dc.identifier.isbn 9783031931055
dc.identifier.isbn 9783031950162
dc.identifier.isbn 9783031947698
dc.identifier.isbn 9783032004406
dc.identifier.isbn 9783031910074
dc.identifier.isbn 9783031926105
dc.identifier.isbn 9789819639410
dc.identifier.isbn 9783031979842
dc.identifier.isbn 9783031931024
dc.identifier.issn 2367-3370
dc.identifier.issn 2367-3389
dc.identifier.scopus 2-s2.0-105013081275
dc.identifier.uri https://doi.org/10.1007/978-3-031-98565-2_72
dc.language.iso en
dc.publisher Springer Science and Business Media Deutschland GmbH
dc.relation.ispartof Lecture Notes in Networks and Systems -- 7th International Conference on Intelligent and Fuzzy Systems, INFUS 2025 -- Istanbul – 336089
dc.relation.ispartofseries Lecture Notes in Networks and Systems
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Digital Soil Mapping en_US
dc.subject Ensemble Learning en_US
dc.subject Geospatial Technologies en_US
dc.subject Generative AI en_US
dc.subject Arid Regions en_US
dc.subject Artificial Intelligence en_US
dc.subject Learning Algorithms en_US
dc.subject Precision Agriculture en_US
dc.subject Soil Surveys en_US
dc.subject Soils en_US
dc.subject Data Collection en_US
dc.subject High Resolution en_US
dc.subject Learning Technology en_US
dc.subject Soil Data en_US
dc.subject Soil Maps en_US
dc.subject Soil Property en_US
dc.subject Mapping en_US
dc.title AI-Driven Digital Soil Mapping: Leveraging Generative AI, Ensemble Learning and Geospatial Technologies for Data-Scarce Regions
dc.type Conference Object
dspace.entity.type Publication
gdc.author.institutional Drias, Yassine
gdc.author.institutional Cakar, Tuna
gdc.author.scopusid 56440023300
gdc.author.scopusid 11538926200
gdc.author.scopusid 58478811000
gdc.author.scopusid 56329345400
gdc.author.scopusid 60039882900
gdc.author.scopusid 60039883000
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 675 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.scopusquality Q4
gdc.description.startpage 668 en_US
gdc.description.volume 1530 en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W4412718477
gdc.identifier.wos WOS:001587122800072
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.0809511E-10
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.46
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 2
gdc.publishedmonth Temmuz
gdc.scopus.citedcount 2
gdc.virtual.author Drias, Yassine
gdc.wos.citedcount 0
gdc.yokperiod YÖK - 2024-25
relation.isAuthorOfPublication fc428ec9-7ded-49de-98b3-c32be0d42348
relation.isAuthorOfPublication.latestForDiscovery fc428ec9-7ded-49de-98b3-c32be0d42348
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication.latestForDiscovery a6e60d5c-b0c7-474a-b49b-284dc710c078

Files