Quantum Recurrent Neural Networks for Soil Profiles Prediction in Turkiye

dc.contributor.author Drias, Yassine
dc.contributor.author Siouane, Alaa Eddine
dc.contributor.author Çakar, Tuna
dc.date.accessioned 2024-10-05T18:38:43Z
dc.date.available 2024-10-05T18:38:43Z
dc.date.issued 2024
dc.description.abstract In this article, we introduce a new approach for soil profile prediction using Quantum Recurrent Neural Networks (QRNNs). By harnessing the power of quantum computing, QRNNs present a promising solution to overcome the limitations of conventional soil mapping techniques. We begin by proposing a classical Recurrent Neural Networks (RNNs) architecture for soil profiles prediction, followed by the design of its quantum counterpart with QRNNs. Focusing on the application of our model in Turkiye, we leverage geospatial data from diverse sources, including climate, vegetation, and land relief data, to showcase the efficacy of QRNNs in soil classification and resource monitoring. Our results reveal a remarkable accuracy score and computational efficiency. Moreover, we delve into the broader implications of quantum computing for digital mapping and explore potential avenues for future research. Emphasizing the integration of quantum computing techniques with digital soil mapping, we foresee a promising advancement in sustainable soil management practices, aiding decision-making processes in agriculture, environmental planning, and natural resource management.
dc.identifier.doi 10.1007/978-3-031-59318-5_10
dc.identifier.isbn 9783031602740
dc.identifier.isbn 9783031593185
dc.identifier.isbn 9783031593178
dc.identifier.uri https://doi.org/10.1007/978-3-031-59318-5_10
dc.identifier.uri https://hdl.handle.net/20.500.11779/2356
dc.language.iso en
dc.publisher Springer international Publishing Ag
dc.relation.ispartof Symposium on Quantum Sciences, Applications and Challenges (QSAC) -- SEP 24-25, 2023 -- Alger Acad Sci & Tech, Algiers, ALGERIA
dc.relation.ispartofseries Information Systems Engineering and Management
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Quantum computing
dc.subject Recurrent neural networks
dc.subject Quantum machine learning
dc.subject Digital soil mapping
dc.title Quantum Recurrent Neural Networks for Soil Profiles Prediction in Turkiye
dc.type Conference Object
dspace.entity.type Publication
gdc.author.institutional Çakar, Tuna
gdc.author.institutional Drias, Yassine
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 133
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 120
gdc.description.volume 2
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W4399593853
gdc.identifier.wos WOS:001298001300010
gdc.index.type WoS
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.7563487E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.9530447E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 5.48168498
gdc.openalex.normalizedpercentile 0.93
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.publishedmonth Haziran
gdc.virtual.author Çakar, Tuna
gdc.virtual.author Drias, Yassine
gdc.wos.citedcount 1
gdc.wos.publishedmonth Haziran
gdc.yokperiod YÖK - 2023-24
local.message.claim 2024-10-23T16:41:21.016+0300
local.message.claim |rp00139
local.message.claim |submit_approve
local.message.claim |dc_contributor_author
local.message.claim |None
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication fc428ec9-7ded-49de-98b3-c32be0d42348
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files