Ensemble-Based Stock Prediction for Retail - XGBoost and LightGBM with Rolling Window Training

dc.contributor.author Patel, Jay Nimish
dc.contributor.author Kizilay, Ayse
dc.contributor.author Şahin, Zeynep
dc.contributor.author Sercan, Busra
dc.contributor.author Toprak, Samet
dc.contributor.author Çakar, Tuna
dc.date.accessioned 2025-10-05T16:35:46Z
dc.date.available 2025-10-05T16:35:46Z
dc.date.issued 2025
dc.description Isik University
dc.description.abstract Stock prediction in retail settings is a critical challenge that impacts numerous businesses globally, that require precise and timely forecasts to optimize inventory management and enhance customer satisfaction. State-of-the-art approaches for accurate stock prediction leverage machine learning (ML) models, which require large amounts of historical sales data for effective training. Such detailed datasets are often hard to obtain, limiting the performance and scalability of these approaches. In this paper, we propose various strategies to tackle this limitation. Initially, we adopt a transfer-learning approach, utilizing pre-trained models like XGBoost and LightGBM, which are fine-tuned for stock prediction in retail environments. To further boost model performance, we incorporate an ensemble method that combines predictions from both models to improve accuracy and manage outliers. Experiments conducted on an extremely large dataset, comprising millions of retail transactions, highlight the presence of significant outliers. Our models, augmented with ensemble strategies, significantly outperform traditional models in handling these complexities and improving prediction accuracy. © 2025 Elsevier B.V., All rights reserved.
dc.identifier.doi 10.1109/SIU66497.2025.11112029
dc.identifier.isbn 9798331566555
dc.identifier.scopus 2-s2.0-105015502500
dc.identifier.uri https://doi.org/10.1109/SIU66497.2025.11112029
dc.identifier.uri https://hdl.handle.net/20.500.11779/3098
dc.language.iso en
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.relation.ispartof -- 33rd IEEE Conference on Signal Processing and Communications Applications, SIU 2025 -- Istanbul; Isik University Sile Campus -- 211450
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Component
dc.subject Formatting
dc.subject Insert
dc.subject Style
dc.subject Styling
dc.subject Customer Satisfaction
dc.subject Forecasting
dc.subject Inventory Control
dc.subject Large Datasets
dc.subject Learning Systems
dc.subject Sales
dc.subject Statistics
dc.subject Transfer Learning
dc.subject Critical Challenges
dc.subject Inventory Management
dc.subject Retail Settings
dc.subject Rolling Window
dc.subject Stock Predictions
dc.subject Personnel Training
dc.title Ensemble-Based Stock Prediction for Retail - XGBoost and LightGBM with Rolling Window Training
dc.type Conference Object
dspace.entity.type Publication
gdc.author.institutional Çakar, Tuna
gdc.author.scopusid 60092909300
gdc.author.scopusid 58876728800
gdc.author.scopusid 58876518800
gdc.author.scopusid 60093149900
gdc.author.scopusid 60092795800
gdc.author.scopusid 56329345400
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W4413462126
gdc.index.type Scopus
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.popularity 2.0809511E-10
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.32
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 0
gdc.publishedmonth Ağustos
gdc.scopus.citedcount 0
gdc.virtual.author Çakar, Tuna
gdc.yokperiod YÖK - 2024-25
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication.latestForDiscovery a6e60d5c-b0c7-474a-b49b-284dc710c078

Files