Quantum FP-Growth Algorithm Using GPU Simulation-Application to Digital Soil Mapping
| dc.contributor.author | Belkadi, Widad Hassina | |
| dc.contributor.author | Drias, Yassine | |
| dc.contributor.author | Drias, Habiba | |
| dc.date.accessioned | 2025-11-05T15:34:16Z | |
| dc.date.available | 2025-11-05T15:34:16Z | |
| dc.date.issued | 2026 | |
| dc.description.abstract | This study introduces a novel quantum version of the FP-growth algorithm for frequent itemset mining, leveraging the combined strengths of classical FP-growth and quantum machine learning. Key contributions include the theoretical and practical framework for Quantum FP-growth, along with a comprehensive analysis of its time and space complexity. We implemented Quantum FP-growth using IBM Qiskit and conducted a comparative evaluation of various quantum amplitude estimation (QAE) methods, including Canonical QAE, Faster QAE, Maximum Likelihood QAE, and Iterative QAE for support estimation. Our findings reveal that Iterative QAE surpasses the other methods in both accuracy and speed. Additionally, we explored the advantages of GPU simulation with IBM Qiskit and NVIDIA cuQuantum. Notably, this research marks the first application of a quantum frequent itemset mining algorithm to a real-world dataset in Digital Soil Mapping (DSM), pioneering the use of quantum technologies in soil science. This study underscores the potential of quantum computing to revolutionize data mining and promote sustainable soil management practices. | en_US |
| dc.description.sponsorship | Directorate General for Scientific Research and Technological Development (DGRSDT) [C0662300] | en_US |
| dc.description.sponsorship | We would like to express our special gratitude to the Directorate General for Scientific Research and Technological Development (DGRSDT) for supporting this work under grant number C0662300. | en_US |
| dc.identifier.doi | 10.1016/j.asoc.2025.114011 | |
| dc.identifier.issn | 1568-4946 | |
| dc.identifier.issn | 1872-9681 | |
| dc.identifier.scopus | 2-s2.0-105019097704 | |
| dc.identifier.uri | https://doi.org/10.1016/j.asoc.2025.114011 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.relation.ispartof | Applied Soft Computing | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Quantum Machine Learning | en_US |
| dc.subject | Quantum FP-Growth | en_US |
| dc.subject | Digital Soil Mapping | en_US |
| dc.subject | GPU Simulation | en_US |
| dc.subject | Quantum Amplitude Estimation | en_US |
| dc.subject | Quantum Amplitude Amplification | en_US |
| dc.subject | cuQuantum | en_US |
| dc.title | Quantum FP-Growth Algorithm Using GPU Simulation-Application to Digital Soil Mapping | |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Drias, Yassine | |
| gdc.author.scopusid | 58478811000 | |
| gdc.author.scopusid | 56440023300 | |
| gdc.author.scopusid | 11538926200 | |
| gdc.author.wosid | Drias, Yassine/Aad-4014-2019 | |
| gdc.author.wosid | Drias, Habiba/Q-6339-2019 | |
| gdc.description.department | Mef University | en_US |
| gdc.description.departmenttemp | [Belkadi, Widad Hassina; Drias, Habiba] USTHB, LRIA, BP 32 El Alia, Algiers 16111, Algeria; [Drias, Yassine] MEF Univ, Maslak Ayazaga Cd 4, TR-34396 Istanbul, Turkiye | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.volume | 186 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.wos | WOS:001602643000001 | |
| gdc.publishedmonth | Ocak | |
| gdc.wos.yokperiod | YÖK- 2025-26 | |
| relation.isAuthorOfPublication | fc428ec9-7ded-49de-98b3-c32be0d42348 | |
| relation.isAuthorOfPublication.latestForDiscovery | fc428ec9-7ded-49de-98b3-c32be0d42348 | |
| relation.isOrgUnitOfPublication | a6e60d5c-b0c7-474a-b49b-284dc710c078 | |
| relation.isOrgUnitOfPublication | 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3 | |
| relation.isOrgUnitOfPublication | 0d54cd31-4133-46d5-b5cc-280b2c077ac3 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | a6e60d5c-b0c7-474a-b49b-284dc710c078 |