Quantum FP-Growth Algorithm Using GPU Simulation-Application to Digital Soil Mapping

dc.contributor.author Belkadi, Widad Hassina
dc.contributor.author Drias, Yassine
dc.contributor.author Drias, Habiba
dc.date.accessioned 2025-11-05T15:34:16Z
dc.date.available 2025-11-05T15:34:16Z
dc.date.issued 2026
dc.description.abstract This study introduces a novel quantum version of the FP-growth algorithm for frequent itemset mining, leveraging the combined strengths of classical FP-growth and quantum machine learning. Key contributions include the theoretical and practical framework for Quantum FP-growth, along with a comprehensive analysis of its time and space complexity. We implemented Quantum FP-growth using IBM Qiskit and conducted a comparative evaluation of various quantum amplitude estimation (QAE) methods, including Canonical QAE, Faster QAE, Maximum Likelihood QAE, and Iterative QAE for support estimation. Our findings reveal that Iterative QAE surpasses the other methods in both accuracy and speed. Additionally, we explored the advantages of GPU simulation with IBM Qiskit and NVIDIA cuQuantum. Notably, this research marks the first application of a quantum frequent itemset mining algorithm to a real-world dataset in Digital Soil Mapping (DSM), pioneering the use of quantum technologies in soil science. This study underscores the potential of quantum computing to revolutionize data mining and promote sustainable soil management practices. en_US
dc.description.sponsorship Directorate General for Scientific Research and Technological Development (DGRSDT) [C0662300] en_US
dc.description.sponsorship We would like to express our special gratitude to the Directorate General for Scientific Research and Technological Development (DGRSDT) for supporting this work under grant number C0662300. en_US
dc.identifier.doi 10.1016/j.asoc.2025.114011
dc.identifier.issn 1568-4946
dc.identifier.issn 1872-9681
dc.identifier.scopus 2-s2.0-105019097704
dc.identifier.uri https://doi.org/10.1016/j.asoc.2025.114011
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof Applied Soft Computing en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Quantum Machine Learning en_US
dc.subject Quantum FP-Growth en_US
dc.subject Digital Soil Mapping en_US
dc.subject GPU Simulation en_US
dc.subject Quantum Amplitude Estimation en_US
dc.subject Quantum Amplitude Amplification en_US
dc.subject cuQuantum en_US
dc.title Quantum FP-Growth Algorithm Using GPU Simulation-Application to Digital Soil Mapping
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Drias, Yassine
gdc.author.scopusid 58478811000
gdc.author.scopusid 56440023300
gdc.author.scopusid 11538926200
gdc.author.wosid Drias, Yassine/Aad-4014-2019
gdc.author.wosid Drias, Habiba/Q-6339-2019
gdc.description.department Mef University en_US
gdc.description.departmenttemp [Belkadi, Widad Hassina; Drias, Habiba] USTHB, LRIA, BP 32 El Alia, Algiers 16111, Algeria; [Drias, Yassine] MEF Univ, Maslak Ayazaga Cd 4, TR-34396 Istanbul, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 186 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.wos WOS:001602643000001
gdc.publishedmonth Ocak
gdc.wos.yokperiod YÖK- 2025-26
relation.isAuthorOfPublication fc428ec9-7ded-49de-98b3-c32be0d42348
relation.isAuthorOfPublication.latestForDiscovery fc428ec9-7ded-49de-98b3-c32be0d42348
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication.latestForDiscovery a6e60d5c-b0c7-474a-b49b-284dc710c078

Files