Domain Adaptation Approaches for Acoustic Modeling

dc.contributor.author Arısoy, Ebru
dc.contributor.author Fakhan, Enver
dc.date.accessioned 2021-10-09T07:19:14Z
dc.date.available 2021-10-09T07:19:14Z
dc.date.issued 2020
dc.description.abstract In the recent years, with the development of neural network based models, ASR systems have achieved a tremendous performance increase. However, this performance increase mostly depends on the amount of training data and the computational power. In a low-resource data scenario, publicly available datasets can be utilized to overcome data scarcity. Furthermore, using a pre-trained model and adapting it to the in-domain data can help with computational constraint. In this paper we have leveraged two different publicly available datasets and investigate various acoustic model adaptation approaches. We show that 4% word error rate can be achieved using a very limited in-domain data.
dc.description.sponsorship Istanbul Medipol Univ
dc.identifier.citation E. Fakhan and E. Arısoy, (5-7 Oct. 2020). Domain Adaptation Approaches for Acoustic Modeling," 2020 28th Signal Processing and Communications Applications Conference (SIU), pp. 1-4, doi: 10.1109/SIU49456.2020.9302343.
dc.identifier.doi 10.1109/SIU49456.2020.9302343
dc.identifier.isbn 9781728172064
dc.identifier.issn 2165-0608
dc.identifier.scopus 2-s2.0-85100309893
dc.identifier.uri https://doi.org/10.1109/SIU49456.2020.9302343
dc.identifier.uri https://hdl.handle.net/20.500.11779/1568
dc.language.iso tr
dc.publisher IEEE
dc.relation.ispartof 2020 28th Signal Processing and Communications Applications Conference (SIU)
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Art
dc.subject Akustik model uyarlama
dc.subject Yapay sinir ağları
dc.subject Training data
dc.subject Otomatik konuşma tanıma
dc.subject Transforms
dc.subject Adaptation models
dc.subject Data models
dc.subject Computational modeling
dc.subject Neural networks
dc.title Domain Adaptation Approaches for Acoustic Modeling
dc.title.alternative Akustik modelleme için alana uyarlama yaklaşımları
dc.type Conference Object
dspace.entity.type Publication
gdc.author.id Ebru Arısoy / 0000-0002-8311-3611
gdc.author.institutional Arısoy, Ebru
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 1-4
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W3135081184
gdc.identifier.wos WOS:000653136100316
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.6264189E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.5789892E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0305 other medical science
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.21
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 1
gdc.publishedmonth Ekim
gdc.relation.journal 2020 28th Signal Processing and Communications Applications Conference (SIU)
gdc.scopus.citedcount 1
gdc.virtual.author Arısoy Saraçlar, Ebru
gdc.wos.citedcount 1
gdc.wos.collaboration Uluslararası işbirliği ile yapılmayan - HAYIR
gdc.wos.documenttype Proceedings Paper
gdc.wos.indexdate 2020
gdc.wos.publishedmonth Ekim
gdc.yokperiod YÖK - 2020-21
relation.isAuthorOfPublication 0b895153-5793-4e46-bc2f-06a28b30f531
relation.isAuthorOfPublication.latestForDiscovery 0b895153-5793-4e46-bc2f-06a28b30f531
relation.isOrgUnitOfPublication de19334f-6a5b-4f7b-9410-9433c48d1e5a
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery de19334f-6a5b-4f7b-9410-9433c48d1e5a

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Domain_Adaptation_Approaches_for_Acoustic_Modeling.pdf
Size:
503.49 KB
Format:
Adobe Portable Document Format
Description:
Proceedings Paper

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: