Domain Adaptation Approaches for Acoustic Modeling
| dc.contributor.author | Arısoy, Ebru | |
| dc.contributor.author | Fakhan, Enver | |
| dc.date.accessioned | 2021-10-09T07:19:14Z | |
| dc.date.available | 2021-10-09T07:19:14Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | In the recent years, with the development of neural network based models, ASR systems have achieved a tremendous performance increase. However, this performance increase mostly depends on the amount of training data and the computational power. In a low-resource data scenario, publicly available datasets can be utilized to overcome data scarcity. Furthermore, using a pre-trained model and adapting it to the in-domain data can help with computational constraint. In this paper we have leveraged two different publicly available datasets and investigate various acoustic model adaptation approaches. We show that 4% word error rate can be achieved using a very limited in-domain data. | |
| dc.description.sponsorship | Istanbul Medipol Univ | |
| dc.identifier.citation | E. Fakhan and E. Arısoy, (5-7 Oct. 2020). Domain Adaptation Approaches for Acoustic Modeling," 2020 28th Signal Processing and Communications Applications Conference (SIU), pp. 1-4, doi: 10.1109/SIU49456.2020.9302343. | |
| dc.identifier.doi | 10.1109/SIU49456.2020.9302343 | |
| dc.identifier.isbn | 9781728172064 | |
| dc.identifier.issn | 2165-0608 | |
| dc.identifier.scopus | 2-s2.0-85100309893 | |
| dc.identifier.uri | https://doi.org/10.1109/SIU49456.2020.9302343 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.11779/1568 | |
| dc.language.iso | tr | |
| dc.publisher | IEEE | |
| dc.relation.ispartof | 2020 28th Signal Processing and Communications Applications Conference (SIU) | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Art | |
| dc.subject | Akustik model uyarlama | |
| dc.subject | Yapay sinir ağları | |
| dc.subject | Training data | |
| dc.subject | Otomatik konuşma tanıma | |
| dc.subject | Transforms | |
| dc.subject | Adaptation models | |
| dc.subject | Data models | |
| dc.subject | Computational modeling | |
| dc.subject | Neural networks | |
| dc.title | Domain Adaptation Approaches for Acoustic Modeling | |
| dc.title.alternative | Akustik modelleme için alana uyarlama yaklaşımları | |
| dc.type | Conference Object | |
| dspace.entity.type | Publication | |
| gdc.author.id | Ebru Arısoy / 0000-0002-8311-3611 | |
| gdc.author.institutional | Arısoy, Ebru | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.description.department | Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü | |
| gdc.description.endpage | 4 | |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 1-4 | |
| gdc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W3135081184 | |
| gdc.identifier.wos | WOS:000653136100316 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.6264189E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 2.5789892E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 03 medical and health sciences | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 0305 other medical science | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.21 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 1 | |
| gdc.publishedmonth | Ekim | |
| gdc.relation.journal | 2020 28th Signal Processing and Communications Applications Conference (SIU) | |
| gdc.scopus.citedcount | 1 | |
| gdc.virtual.author | Arısoy Saraçlar, Ebru | |
| gdc.wos.citedcount | 1 | |
| gdc.wos.collaboration | Uluslararası işbirliği ile yapılmayan - HAYIR | |
| gdc.wos.documenttype | Proceedings Paper | |
| gdc.wos.indexdate | 2020 | |
| gdc.wos.publishedmonth | Ekim | |
| gdc.yokperiod | YÖK - 2020-21 | |
| relation.isAuthorOfPublication | 0b895153-5793-4e46-bc2f-06a28b30f531 | |
| relation.isAuthorOfPublication.latestForDiscovery | 0b895153-5793-4e46-bc2f-06a28b30f531 | |
| relation.isOrgUnitOfPublication | de19334f-6a5b-4f7b-9410-9433c48d1e5a | |
| relation.isOrgUnitOfPublication | 0d54cd31-4133-46d5-b5cc-280b2c077ac3 | |
| relation.isOrgUnitOfPublication | a6e60d5c-b0c7-474a-b49b-284dc710c078 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | de19334f-6a5b-4f7b-9410-9433c48d1e5a |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Domain_Adaptation_Approaches_for_Acoustic_Modeling.pdf
- Size:
- 503.49 KB
- Format:
- Adobe Portable Document Format
- Description:
- Proceedings Paper
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.44 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
