Compositional Neural Network Language Models for Agglutinative Languages

dc.contributor.author Saraçlar, Murat
dc.contributor.author Arısoy, Ebru
dc.date.accessioned 2019-02-28T13:04:26Z
dc.date.accessioned 2019-02-28T11:08:18Z
dc.date.available 2019-02-28T13:04:26Z
dc.date.available 2019-02-28T11:08:18Z
dc.date.issued 2016
dc.description Ebru Arısoy (MEF Author)
dc.description.abstract Continuous space language models (CSLMs) have been proven to be successful in speech recognition. With proper training of the word embeddings, words that are semantically or syntactically related are expected to be mapped to nearby locations in the continuous space. In agglutinative languages, words are made up of concatenation of stems and suffixes and, as a result, compositional modeling is important. However, when trained on word tokens, CSLMs do not explicitly consider this structure. In this paper, we explore compositional modeling of stems and suffixes in a long short-term memory neural network language model. Our proposed models jointly learn distributed representations for stems and endings (concatenation of suffixes) and predict the probability for stem and ending sequences. Experiments on the Turkish Broadcast news transcription task show that further gains on top of a state-of-theart stem-ending-based n-gram language model can be obtained with the proposed models.
dc.identifier.citation Arisoy, E., Saraclar, M., Compositional Neural Network Language Models for Agglutinative Languages. p. 3494-3498.
dc.identifier.doi 10.21437/Interspeech.2016-1239
dc.identifier.issn 2308-457X
dc.identifier.scopus 2-s2.0-84994336850
dc.identifier.uri http://dx.doi.org/10.21437/Interspeech.2016-1239
dc.identifier.uri https://hdl.handle.net/20.500.11779/686
dc.language.iso en
dc.relation.ispartof Conference: 17th Annual Conference of the International-Speech-Communication-Association (INTERSPEECH 2016) Location: San Francisco, CA Date: SEP 08-12, 2016
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Agglutinative languages
dc.subject Sub-word-based language modeling
dc.subject Long short-term memory
dc.subject Language modeling
dc.subject Author information
dc.title Compositional Neural Network Language Models for Agglutinative Languages
dc.type Conference Object
dspace.entity.type Publication
gdc.author.id Ebru Arısoy / 0000-0002-8311-3611
gdc.author.institutional Arısoy, Ebru
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü
gdc.description.endpage 3498
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 3494
gdc.description.woscitationindex Conference Proceedings Citation Index - Science - Conference Proceedings Citation Index - Social Science & Humanities
gdc.description.wosquality N/A
gdc.identifier.openalex W2514621404
gdc.identifier.wos WOS:000409394402080
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.downloads 2
gdc.oaire.impulse 5.0
gdc.oaire.influence 3.003231E-9
gdc.oaire.isgreen true
gdc.oaire.popularity 1.243742E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.views 3
gdc.openalex.fwci 1.12750752
gdc.openalex.normalizedpercentile 0.91
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 5
gdc.plumx.crossrefcites 4
gdc.plumx.mendeley 24
gdc.plumx.scopuscites 5
gdc.publishedmonth Eylül
gdc.scopus.citedcount 5
gdc.virtual.author Arısoy Saraçlar, Ebru
gdc.wos.citedcount 2
gdc.wos.documenttype Proceedings Paper
gdc.wos.indexdate 2016
gdc.wos.publishedmonth Eylül
gdc.yokperiod YÖK - 2016-17
relation.isAuthorOfPublication 0b895153-5793-4e46-bc2f-06a28b30f531
relation.isAuthorOfPublication.latestForDiscovery 0b895153-5793-4e46-bc2f-06a28b30f531
relation.isOrgUnitOfPublication de19334f-6a5b-4f7b-9410-9433c48d1e5a
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery de19334f-6a5b-4f7b-9410-9433c48d1e5a

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Compositional Neural Network Language Models for Agglutinative Languages.PDF
Size:
367.92 KB
Format:
Adobe Portable Document Format
Description:
Konferans Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: