Alternative Credit Scoring Model for Thin File Customers

dc.contributor.advisor Taş Küten, Duygu
dc.contributor.author Korkmaz, İstem Akça
dc.date.accessioned 2019-11-12T13:42:05Z
dc.date.available 2019-11-12T13:42:05Z
dc.date.issued 2019
dc.description.abstract Credit scoring is a widely used tool for banks, financial institutions or corporations. Traditional credit score models are calculated from past financial history of users, and this may lead to exclude some people who have limited financial history from the credit system. Alternative credit scoring allows sector players to access to a larger portion of these customers. The credit scoring industry has expanded with an "all data is credit data" approach that combines traditional credit scoring systems with new data points. In this study, we aim to build an alternative credit scoring model for customers who have limited financial historical data (thin file) by using alternative data points for a national bank in Turkey. Some of the alternative data points and variables have been gathered from one of the bank’s products: the authorized card for Turkish national league football tickets (Passolig). Using alternative data points combining with demographical and geographical information, we perform a comparison between the machine-learning approaches. We use logistic regression approach as a base model and perform a comparison between tree-based approaches: decision tree, random forest and XGBoost to select the most effective modelling approach
dc.description.abstract Kredi puanlama yöntemleri bankalar, finansal kurumlar ve şirketler tarafından yaygın olarak kullanılır. Geleneksel kredi puanlama yöntemleri, finansal kullanıcıların geçmiş verilerine dayanarak hesaplanır ve bu durum, finansal geçmişi sınırlı olan kişilerin kredi sisteminin dışında kalmasına yol açabilir. Alternatif kredi puanlama yöntemleri, sektör oyuncularının bu kişilerin büyük bir kısmına erişmesine olanak sağlar. Geleneksel kredi puanlama yöntemlerini yeni alternatif veri kaynaklarıyla birleştiren kredi puanlama sektörü, "tüm veriler kredi verisidir" yaklaşımıyla genişlemektedir. Bu çalışmada, Türkiye'deki bir ulusal bankanın kredi geçmişi az olan müşterilerine, alternatif veriler kullanarak bir kredi puanlama modeli oluşturmak amaçlanmaktadır. Alternatif veri kaynağı olarak bankanın ürünlerinden biri olan Türkiye ulusal futbol ligi yetkili kartı Passolig verileri kullanılmıştır. Demografik ve coğrafi verilerle birleştirilen bu alternatif veri farklı makine öğrenimi yaklaşımlarıyla modellenerek karşılaştırılmıştır. Lojistik regresyon yaklaşımı temel model olarak alınmış ve karar ağacı, rasgele orman ve XGBoost gibi ağaç tabanlı yaklaşımlarla karşılaştırılarak en etkili modelleme yaklaşımına ulaşılmaya çalışılmıştır.
dc.identifier.citation Korkmaz, İA. (2019). Alternative credit scoring model for thin file customers, MEF Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye
dc.identifier.uri https://hdl.handle.net/20.500.11779/1216
dc.language.iso en
dc.publisher MEF Üniversitesi, Fen Bilimleri Enstitüsü
dc.rights info:eu-repo/semantics/openAccess
dc.subject Alternative Credit Scoring
dc.subject Thin File Customers
dc.subject Binary Classification Techniques
dc.subject Logistic Regression
dc.subject Tree Based Algorithms
dc.subject Alternatif Kredi Puanlaması
dc.subject Kredi Geçmişi Az Olan Müşteriler
dc.subject İkili Sınıflandırma
dc.subject Lojistik Regresyon
dc.subject Ağaç Tabanlı Algoritmalar
dc.title Alternative Credit Scoring Model for Thin File Customers
dc.title.alternative Kredi geçmişi az olan kişilere yönelik alternatif kredi puanlama modelleri
dc.type Master's Degree Project
dspace.entity.type Publication
gdc.author.institutional Korkmaz, İstem Akça
gdc.coar.access open access
gdc.coar.type text::thesis::master thesis
gdc.description.department Lisansüstü Eğitim Enstitüsü, Büyük Veri Analitiği Yüksek Lisans Programı
gdc.description.publicationcategory YL-Bitirme Projesi
gdc.description.scopusquality N/A
gdc.description.wosquality N/A
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery a6e60d5c-b0c7-474a-b49b-284dc710c078

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
İstemAkçaKorkmaz.pdf
Size:
328.81 KB
Format:
Adobe Portable Document Format
Description:
YL-Proje Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: