Breast Lesion Detection From Dce-Mri Using Yolov7

dc.contributor.author Şahin,Sinan
dc.contributor.author Araz, Nusret
dc.contributor.author Bakırman, Tolga
dc.contributor.author Çakar, Tuna
dc.contributor.author Kulavuz, Bahadır
dc.contributor.author Bayram, Bülent
dc.contributor.author Çavuşoğlu, Mustafa
dc.date.accessioned 2024-06-21T12:19:52Z
dc.date.available 2024-06-21T12:19:52Z
dc.date.issued 2024
dc.description.abstract Breast cancer is one of the most common types of cancer among women. Early diagnosis of breast cancer has vital importance to prevent unexpected losses. A worldwide effort has been made to tackle early detection challenge. Dynamic contrast-enhanced magnetic resonance imaging is a superior imaging system that improves breast cancer diagnosis quality of physicians. Computer Aided Diagnosis systems are used as a complementary tool to improve breast cancer diagnosis. In last decades, various computer aided diagnosis systems have been proposed. However, the state-of-the-art deep learning-based approaches have started to overcome conventional medical image processing methods. In this study, we aimed to detect malignant breast lesions from open access dynamic contrast-enhanced magnetic resonance imagery dataset using most recent YOLOv7 deep learning architecture. 2400 images have been used for training (80%) and testing (20%) of the network. The metrics calculated with the test dataset are 98.54%, 96.42% and 84.40% for mAP@0.50 IoU, mAP@0.75 IoU and mAP, respectively. The results show that YOLOv7 architecture is capable to detect malignant breast lesions from dynamic contrast-enhanced magnetic resonance images efficiently. © 2024 Author(s).
dc.identifier.doi 10.1063/5.0193021
dc.identifier.issn 0094-243X
dc.identifier.scopus 2-s2.0-85189248232
dc.identifier.uri https://hdl.handle.net/20.500.11779/2291
dc.identifier.uri https://doi.org/10.1063/5.0193021
dc.language.iso en
dc.publisher American Institute of Physics
dc.relation.ispartof AIP Conference Proceedings -- International Conference of Computational Methods in Sciences and Engineering 2022, ICCMSE 2022 -- 26 October 2022 through 29 October 2022 -- Hybrid, Heraklion -- 198111
dc.rights info:eu-repo/semantics/closedAccess
dc.subject [no keyword available]
dc.title Breast Lesion Detection From Dce-Mri Using Yolov7
dc.type Conference Object
dspace.entity.type Publication
gdc.author.institutional Çakar, Tuna,
gdc.author.scopusid 57772011400
gdc.author.scopusid 58707506200
gdc.author.scopusid 15130508500
gdc.author.scopusid 56247265800
gdc.author.scopusid 58966765300
gdc.author.scopusid 58705714400
gdc.author.scopusid 58706602800
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.issue 1
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.scopusquality Q4
gdc.description.startpage 030006
gdc.description.volume 3030
gdc.description.wosquality N/A
gdc.identifier.openalex W4392799908
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.downloads 8
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.6289766E-9
gdc.oaire.isgreen true
gdc.oaire.popularity 2.9489577E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.views 21
gdc.openalex.collaboration National
gdc.openalex.fwci 1.2775571
gdc.openalex.normalizedpercentile 0.74
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 2
gdc.publishedmonth Mart
gdc.scopus.citedcount 2
gdc.virtual.author Çakar, Tuna
gdc.wos.publishedmonth Mart
gdc.yokperiod YÖK - 2023-24
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files