Breast Lesion Detection From Dce-Mri Using Yolov7
| dc.contributor.author | Şahin,Sinan | |
| dc.contributor.author | Araz, Nusret | |
| dc.contributor.author | Bakırman, Tolga | |
| dc.contributor.author | Çakar, Tuna | |
| dc.contributor.author | Kulavuz, Bahadır | |
| dc.contributor.author | Bayram, Bülent | |
| dc.contributor.author | Çavuşoğlu, Mustafa | |
| dc.date.accessioned | 2024-06-21T12:19:52Z | |
| dc.date.available | 2024-06-21T12:19:52Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | Breast cancer is one of the most common types of cancer among women. Early diagnosis of breast cancer has vital importance to prevent unexpected losses. A worldwide effort has been made to tackle early detection challenge. Dynamic contrast-enhanced magnetic resonance imaging is a superior imaging system that improves breast cancer diagnosis quality of physicians. Computer Aided Diagnosis systems are used as a complementary tool to improve breast cancer diagnosis. In last decades, various computer aided diagnosis systems have been proposed. However, the state-of-the-art deep learning-based approaches have started to overcome conventional medical image processing methods. In this study, we aimed to detect malignant breast lesions from open access dynamic contrast-enhanced magnetic resonance imagery dataset using most recent YOLOv7 deep learning architecture. 2400 images have been used for training (80%) and testing (20%) of the network. The metrics calculated with the test dataset are 98.54%, 96.42% and 84.40% for mAP@0.50 IoU, mAP@0.75 IoU and mAP, respectively. The results show that YOLOv7 architecture is capable to detect malignant breast lesions from dynamic contrast-enhanced magnetic resonance images efficiently. © 2024 Author(s). | |
| dc.identifier.doi | 10.1063/5.0193021 | |
| dc.identifier.issn | 0094-243X | |
| dc.identifier.scopus | 2-s2.0-85189248232 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.11779/2291 | |
| dc.identifier.uri | https://doi.org/10.1063/5.0193021 | |
| dc.language.iso | en | |
| dc.publisher | American Institute of Physics | |
| dc.relation.ispartof | AIP Conference Proceedings -- International Conference of Computational Methods in Sciences and Engineering 2022, ICCMSE 2022 -- 26 October 2022 through 29 October 2022 -- Hybrid, Heraklion -- 198111 | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | [no keyword available] | |
| dc.title | Breast Lesion Detection From Dce-Mri Using Yolov7 | |
| dc.type | Conference Object | |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Çakar, Tuna, | |
| gdc.author.scopusid | 57772011400 | |
| gdc.author.scopusid | 58707506200 | |
| gdc.author.scopusid | 15130508500 | |
| gdc.author.scopusid | 56247265800 | |
| gdc.author.scopusid | 58966765300 | |
| gdc.author.scopusid | 58705714400 | |
| gdc.author.scopusid | 58706602800 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.description.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | |
| gdc.description.issue | 1 | |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
| gdc.description.scopusquality | Q4 | |
| gdc.description.startpage | 030006 | |
| gdc.description.volume | 3030 | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W4392799908 | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.downloads | 8 | |
| gdc.oaire.impulse | 2.0 | |
| gdc.oaire.influence | 2.6289766E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.popularity | 2.9489577E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 03 medical and health sciences | |
| gdc.oaire.sciencefields | 0302 clinical medicine | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.views | 21 | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 1.2775571 | |
| gdc.openalex.normalizedpercentile | 0.74 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 4 | |
| gdc.plumx.scopuscites | 2 | |
| gdc.publishedmonth | Mart | |
| gdc.scopus.citedcount | 2 | |
| gdc.virtual.author | Çakar, Tuna | |
| gdc.wos.publishedmonth | Mart | |
| gdc.yokperiod | YÖK - 2023-24 | |
| relation.isAuthorOfPublication | 10f8ce3b-94c2-40f0-9381-0725723768fe | |
| relation.isAuthorOfPublication.latestForDiscovery | 10f8ce3b-94c2-40f0-9381-0725723768fe | |
| relation.isOrgUnitOfPublication | 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3 | |
| relation.isOrgUnitOfPublication | 0d54cd31-4133-46d5-b5cc-280b2c077ac3 | |
| relation.isOrgUnitOfPublication | a6e60d5c-b0c7-474a-b49b-284dc710c078 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3 |
