İnternet Trafik Hızının Tahmininde Derin Öğrenme ve Ağaç Tabanlı Modellerin Karşılaştırılması

dc.contributor.author Filiz, Gozde
dc.contributor.author Altıntaş, Suat
dc.contributor.author Yıldız, Ayşenur
dc.contributor.author Kara, Erkan
dc.contributor.author Drias, Yassine
dc.contributor.author Çakar, Tuna
dc.date.accessioned 2025-10-05T16:35:47Z
dc.date.available 2025-10-05T16:35:47Z
dc.date.issued 2025
dc.description Isik University
dc.description.abstract This study addresses the prediction of internet traffic speed using time-dependent data from an internet service provider through different modeling approaches. On an anonymized dataset, the performance of the moving average method, various deep learning models (N-BEATS, N-HITS, TimesNet, TSMixer, LSTM), and the XGBoost regression model enhanced with feature engineering was compared. Time series cross-validation and random hyperparameter search were used for model training. According to the results, the XGBoost model achieved the highest accuracy with 98.7% explained variance (R2), while among the deep learning models, N-BEATS and N-HITS achieved the best performance with R2 values around 90%. The findings indicate that tree-based methods supported by carefully selected features can offer higher accuracy and computational efficiency compared to complex deep learning models in internet traffic forecasting. © 2025 Elsevier B.V., All rights reserved.
dc.identifier.doi 10.1109/SIU66497.2025.11112468
dc.identifier.isbn 9798331566555
dc.identifier.scopus 2-s2.0-105015414240
dc.identifier.uri https://doi.org/10.1109/SIU66497.2025.11112468
dc.identifier.uri https://hdl.handle.net/20.500.11779/3101
dc.language.iso tr
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.relation.ispartof -- 33rd IEEE Conference on Signal Processing and Communications Applications, SIU 2025 -- Istanbul; Isik University Sile Campus -- 211450
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Deep Learning Models
dc.subject Internet Traffic Prediction
dc.subject Time Series Analysis
dc.subject XGBoost
dc.subject Computational Efficiency
dc.subject Data Mining
dc.subject Deep Learning
dc.subject Forecasting
dc.subject Intelligent Systems
dc.subject Learning Systems
dc.subject Regression Analysis
dc.subject Deep Learning Model
dc.subject High-Accuracy
dc.subject Internet Traffic
dc.subject Learning Models
dc.subject Performance
dc.subject Time-Series Analysis
dc.subject Traffic Prediction
dc.subject Traffic Speed
dc.subject Xgboost
dc.title İnternet Trafik Hızının Tahmininde Derin Öğrenme ve Ağaç Tabanlı Modellerin Karşılaştırılması
dc.title.alternative Comparison of Deep Learning and Tree-Based Models for Internet Traffic Speed Prediction
dc.type Conference Object
dspace.entity.type Publication
gdc.author.institutional Filiz, Gozde
gdc.author.institutional Drias, Yassine
gdc.author.institutional Çakar, Tuna
gdc.author.scopusid 58634073400
gdc.author.scopusid 59490536100
gdc.author.scopusid 58876694800
gdc.author.scopusid 58876482000
gdc.author.scopusid 56440023300
gdc.author.scopusid 56329345400
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W4413464417
gdc.index.type Scopus
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.popularity 2.0809511E-10
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.31
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.publishedmonth Ağustos
gdc.scopus.citedcount 0
gdc.virtual.author Drias, Yassine
gdc.virtual.author Çakar, Tuna
gdc.yokperiod YÖK - 2024-25
relation.isAuthorOfPublication fc428ec9-7ded-49de-98b3-c32be0d42348
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery fc428ec9-7ded-49de-98b3-c32be0d42348
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication.latestForDiscovery a6e60d5c-b0c7-474a-b49b-284dc710c078

Files