İnternet Trafik Hızının Tahmininde Derin Öğrenme ve Ağaç Tabanlı Modellerin Karşılaştırılması
| dc.contributor.author | Filiz, Gozde | |
| dc.contributor.author | Altıntaş, Suat | |
| dc.contributor.author | Yıldız, Ayşenur | |
| dc.contributor.author | Kara, Erkan | |
| dc.contributor.author | Drias, Yassine | |
| dc.contributor.author | Çakar, Tuna | |
| dc.date.accessioned | 2025-10-05T16:35:47Z | |
| dc.date.available | 2025-10-05T16:35:47Z | |
| dc.date.issued | 2025 | |
| dc.description | Isik University | |
| dc.description.abstract | This study addresses the prediction of internet traffic speed using time-dependent data from an internet service provider through different modeling approaches. On an anonymized dataset, the performance of the moving average method, various deep learning models (N-BEATS, N-HITS, TimesNet, TSMixer, LSTM), and the XGBoost regression model enhanced with feature engineering was compared. Time series cross-validation and random hyperparameter search were used for model training. According to the results, the XGBoost model achieved the highest accuracy with 98.7% explained variance (R2), while among the deep learning models, N-BEATS and N-HITS achieved the best performance with R2 values around 90%. The findings indicate that tree-based methods supported by carefully selected features can offer higher accuracy and computational efficiency compared to complex deep learning models in internet traffic forecasting. © 2025 Elsevier B.V., All rights reserved. | |
| dc.identifier.doi | 10.1109/SIU66497.2025.11112468 | |
| dc.identifier.isbn | 9798331566555 | |
| dc.identifier.scopus | 2-s2.0-105015414240 | |
| dc.identifier.uri | https://doi.org/10.1109/SIU66497.2025.11112468 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.11779/3101 | |
| dc.language.iso | tr | |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
| dc.relation.ispartof | -- 33rd IEEE Conference on Signal Processing and Communications Applications, SIU 2025 -- Istanbul; Isik University Sile Campus -- 211450 | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Deep Learning Models | |
| dc.subject | Internet Traffic Prediction | |
| dc.subject | Time Series Analysis | |
| dc.subject | XGBoost | |
| dc.subject | Computational Efficiency | |
| dc.subject | Data Mining | |
| dc.subject | Deep Learning | |
| dc.subject | Forecasting | |
| dc.subject | Intelligent Systems | |
| dc.subject | Learning Systems | |
| dc.subject | Regression Analysis | |
| dc.subject | Deep Learning Model | |
| dc.subject | High-Accuracy | |
| dc.subject | Internet Traffic | |
| dc.subject | Learning Models | |
| dc.subject | Performance | |
| dc.subject | Time-Series Analysis | |
| dc.subject | Traffic Prediction | |
| dc.subject | Traffic Speed | |
| dc.subject | Xgboost | |
| dc.title | İnternet Trafik Hızının Tahmininde Derin Öğrenme ve Ağaç Tabanlı Modellerin Karşılaştırılması | |
| dc.title.alternative | Comparison of Deep Learning and Tree-Based Models for Internet Traffic Speed Prediction | |
| dc.type | Conference Object | |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Filiz, Gozde | |
| gdc.author.institutional | Drias, Yassine | |
| gdc.author.institutional | Çakar, Tuna | |
| gdc.author.scopusid | 58634073400 | |
| gdc.author.scopusid | 59490536100 | |
| gdc.author.scopusid | 58876694800 | |
| gdc.author.scopusid | 58876482000 | |
| gdc.author.scopusid | 56440023300 | |
| gdc.author.scopusid | 56329345400 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.description.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | |
| gdc.description.endpage | 4 | |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 1 | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W4413464417 | |
| gdc.index.type | Scopus | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.5942106E-9 | |
| gdc.oaire.popularity | 2.0809511E-10 | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.31 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.publishedmonth | Ağustos | |
| gdc.scopus.citedcount | 0 | |
| gdc.virtual.author | Drias, Yassine | |
| gdc.virtual.author | Çakar, Tuna | |
| gdc.yokperiod | YÖK - 2024-25 | |
| relation.isAuthorOfPublication | fc428ec9-7ded-49de-98b3-c32be0d42348 | |
| relation.isAuthorOfPublication | 10f8ce3b-94c2-40f0-9381-0725723768fe | |
| relation.isAuthorOfPublication.latestForDiscovery | fc428ec9-7ded-49de-98b3-c32be0d42348 | |
| relation.isOrgUnitOfPublication | a6e60d5c-b0c7-474a-b49b-284dc710c078 | |
| relation.isOrgUnitOfPublication | 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3 | |
| relation.isOrgUnitOfPublication | 0d54cd31-4133-46d5-b5cc-280b2c077ac3 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | a6e60d5c-b0c7-474a-b49b-284dc710c078 |
