A Practical PCB-Based Framework for Spiking Neural Networks with a Half-Adder Example

dc.contributor.author Cikikci, Sevde Vuslat
dc.contributor.author Orek, Eren
dc.contributor.author Aysoy, Ayhan
dc.contributor.author Ozgen, Ali Kagan
dc.contributor.author Yavuz, Arda
dc.contributor.author Ayhan, Tuba
dc.date.accessioned 2025-09-05T15:47:38Z
dc.date.available 2025-09-05T15:47:38Z
dc.date.issued 2025
dc.description.abstract This paper addresses the half-adder problem using Spiking Neural Networks (SNNs). In a previous study, the XOR operation was successfully realized on a breadboard and in this study it is integrated into the half-adder structure. The system uses input signals at frequencies of 50 Hz and 100 Hz and the neurons are generated by the Leaky Integrate and Fire (LIF) model. Unlike other neuron models, the LIF model is less complex. In addition, it was preferred because of its biological meaningfulness compared to the Integrate and Fire model. The network, consisting of 18 neurons in total, shows that basic arithmetic operations can be performed with SNN. Overall, this study demonstrates that basic logic operations can be implemented in neural networks, thus providing new perspectives for digital calculation. The successful solution of the Half Adder problem using SNNs not only proves the calculation capabilities of SNNs, but also opens new perspectives for the development of more complex logical circuits using these biologically inspired neural circuits. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkiye (TUBITAK) en_US
dc.description.sponsorship This project is supported by The Scientific and Technological Research Council of Turkiye (TUBITAK). en_US
dc.identifier.doi 10.1109/SMACD65553.2025.11092008
dc.identifier.isbn 9798331523961
dc.identifier.isbn 9798331523954
dc.identifier.issn 2575-4874
dc.identifier.issn 2575-4890
dc.identifier.scopus 2-s2.0-105013472678
dc.identifier.uri https://doi.org/10.1109/SMACD65553.2025.11092008
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.ispartof 21st International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design-SMACD -- JUL 07-10, 2025 -- Istanbul, TURKIYE en_US
dc.relation.ispartofseries International Conference on Synthesis Modeling Analysis and Simulation Methods and Applications to Circuit Design
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Spiking Neural Network (SNN) en_US
dc.subject Leaky Integrate and Fire (LIF) en_US
dc.subject Half-Adder en_US
dc.subject XOR en_US
dc.subject Circuit en_US
dc.subject Transistors en_US
dc.subject NMOS en_US
dc.subject PMOS en_US
dc.title A Practical PCB-Based Framework for Spiking Neural Networks with a Half-Adder Example
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Ayhan, Tuba
gdc.author.wosid Yavuz, Arda/Aah-3483-2021
gdc.author.wosid Ayhan, Tuba/Aaf-6448-2021
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.description.department Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.wos WOS:001554977800024
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.0809511E-10
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.0
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.publishedmonth Temmuz
gdc.scopus.citedcount 0
gdc.wos.yokperiod YÖK - 2024-25

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
323332.pdf
Size:
550.93 KB
Format:
Adobe Portable Document Format
Description: