Turkish Private Pension Fund Size Forecasting as an Application of Data Analytics

dc.contributor.advisor Tuna Çakar
dc.contributor.author Kara, Serdar Ufuk
dc.date.accessioned 2021-12-14T11:21:13Z
dc.date.available 2021-12-14T11:21:13Z
dc.date.issued 2020
dc.description.abstract In this study univariate and multivariate models are used to forecast the net changes in total pension fund size of a private pension company in Turkey, using the daily data between November 2003 and November 2020. Univariate models include the naïve, autoregressive (AR), moving average (MA), and autoregressive moving average (ARMA) models. Multivariate models include vector autoregression (VAR) and multiple linear regression models. Our findings suggest that multivariate model predictions outperform univariate model predictions. Univariate model predictions can be improved with walk forward approach. Increased lag size can help improve AR, MA, ARMA and VAR model predictions. Naïve model produces the weakest predictions.
dc.identifier.citation Kara, S. U. (2021). Turkish Private Pension Fund Size Forecasting As An Application of Data Analytics. MEF Üniversitesi Fen Bilimleri Enstitüsü, Bilişim Teknolojileri Yüksek Lisans Programı. ss. 1-36
dc.identifier.uri https://hdl.handle.net/20.500.11779/1689
dc.language.iso en
dc.publisher MEF Üniversitesi Fen Bilimleri Enstitüsü
dc.rights info:eu-repo/semantics/openAccess
dc.subject Pension Fund Size Change, Univariate Model, Multivariate Model, Autoregressive Moving Average Model, Vector Autoregression Model
dc.title Turkish Private Pension Fund Size Forecasting as an Application of Data Analytics
dc.title.alternative Bir veri analitiği uygulaması olarak Türk bireysel emeklilik fon büyüklükleri tahmini
dc.type Master's Degree Project
dspace.entity.type Publication
gdc.author.institutional Kara, Serdar Ufuk
gdc.author.institutional Çakar, Tuna
gdc.coar.access open access
gdc.coar.type text::thesis::master thesis
gdc.description.department Lisansüstü Eğitim Enstitüsü, Bilişim Teknolojileri Yüksek Lisans Programı
gdc.description.publicationcategory YL-Bitirme Projesi
gdc.description.scopusquality N/A
gdc.description.startpage 1-36
gdc.description.wosquality N/A
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FBE_BilişimTeknolojileri_SerdarUfukKara.pdf
Size:
1.25 MB
Format:
Adobe Portable Document Format
Description:
YL-Proje Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: