Pre-Ocr Image Optimization by Reinforcement Learning

dc.contributor.advisor Gökmen, Muhittin
dc.contributor.author Tektunalı, Cihan
dc.date.accessioned 2019-11-12T13:42:02Z
dc.date.available 2019-11-12T13:42:02Z
dc.date.issued 2018
dc.description.abstract Optical Character Recognition technology usage in digital transformation of documents is steadily growing by the help of new hardware and software technologies. However digital image optimization for more accurate OCR results continues to be a problem. In this study, we propose a reinforcement learning based model that learns optimal set of actions to increase OCR accuracy in computer screenshot images. Model input images are identified by their grayscale histogram distributions. An unprocessed base image having 100% OCR accuracy is taken initially. The correlation between the grayscale histograms of base image and input image is used for comparison. We implemented reinforcement learning’s random (or optimal) action and reward approach for creating a Q-table. For measuring image to text conversion success, Tesseract OCR software is used. The introduced approach can improve OCR accuracy especially in bulk image to document conversion jobs. By using optimal actions for single image or bulk images, it can also decrease computational load and time-consumption in image processing.
dc.description.abstract Metinsel dokümanların sayısal ortama aktarılmasında optik karakter tanıma teknolojisinin kullanımı donanım ve yazılım alanındaki gelişmelerin yardımıyla giderek artmaktadır. Bununla birlikte karakter tanımanın daha yüksek başarıyla yapılabilmesi için sayısal görüntü optimizasyonu bir problem olmaya devam etmektedir. Bu çalışmada bilgisayar ekran görüntülerinden karakter tanıma başarısının arttırılması için sayısal görüntü optimizasyonu yapan ve takviyeli öğrenme yöntemini kullanan bir model öne sürülmüştür. Modele girdi olarak verilen sayısal görüntülerin gri ton dağılımları görüntü durumlarını tanımlamak için kullanıldı. Ham haliyle tam başarılı karakter tanıma yapılabilen bir görüntü baz alındı. Verilen yeni görüntüler ile baz alınan görüntünün gri ton dağılımı arasındaki korelasyon değeri görüntüleri karşılaştırmak için kullanıldı. Takviyeli öğrenme ile uygulanan rastgele veya optimal aksiyon dizileri ve sonuç olarak elde edilen ödül değerleri kullanılarak Q-tablosu oluşturuldu. Görüntünün metne çevrilme başarısının ölçümü için Tesseract OCR yazılımı kullanıldı. Oluşturulan bu model ile özellikle sayısal ortama toplu aktarım işlemlerinde karakter tanıma verimi arttırılabilir. Ayrıca görüntü bazında veya tüm görüntü kümesinde optik karakter tanıma iyileştirmesi sağlayacak optimal aksiyonlar kullanılarak toplamdaki hesaplama yükünün ve görüntü işlemede kaybedilen zamanın azaltılması sağlanabilir.
dc.identifier.citation Tektunalı, C. (2018). Pre-ocr ımage optimization by reinforcement learning, MEF Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye
dc.identifier.uri https://hdl.handle.net/20.500.11779/1195
dc.language.iso en
dc.publisher MEF Üniversitesi, Fen Bilimleri Enstitüsü
dc.rights info:eu-repo/semantics/openAccess
dc.subject OCR Accuracy Optimization
dc.subject Reinforcement Learning
dc.subject Q-table Learning
dc.subject Increasing Bulk Image OCR Accuracy
dc.subject Optik Karakter Tanıma Başarım Optimizasyonu
dc.subject Takviyeli Öğrenme
dc.subject Q-tablosu ile Öğrenme
dc.subject Çoklu Görüntülerin Optik Karakter Tanıma Başarımının Arttırılması
dc.title Pre-Ocr Image Optimization by Reinforcement Learning
dc.title.alternative Takviyeli öğrenme ile optik karakter tanıma öncesi görüntü ptimizasyonu
dc.type Master's Degree Project
dspace.entity.type Publication
gdc.author.institutional Tektunalı, Cihan
gdc.coar.access open access
gdc.coar.type text::thesis::master thesis
gdc.description.department Lisansüstü Eğitim Enstitüsü, Büyük Veri Analitiği Yüksek Lisans Programı
gdc.description.publicationcategory YL-Bitirme Projesi
gdc.description.scopusquality N/A
gdc.description.wosquality N/A
gdc.publishedmonth N/A
gdc.virtual.author Gökmen, Muhittin
relation.isAuthorOfPublication b2cb9802-db32-4c9c-88c4-8ee192b85b62
relation.isAuthorOfPublication.latestForDiscovery b2cb9802-db32-4c9c-88c4-8ee192b85b62
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CihanTektunalı.pdf
Size:
676.83 KB
Format:
Adobe Portable Document Format
Description:
YL-Proje Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: