Ad Click Prediction Using Machine Learning Algorithms
| dc.contributor.advisor | Hande Küçükaydın | |
| dc.contributor.author | Uncu, Nazlı Tuğçe | |
| dc.date.accessioned | 2021-12-14T11:21:14Z | |
| dc.date.available | 2021-12-14T11:21:14Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | Online advertising has a great potential to boost business’ revenue. One of the key metrics that defines the success of online ad campaigns is click through rate (CTR) which indicates the total number of clicks received in relation to the total impression. Therefore, the click prediction systems, which have the aim of increasing the click through rates of online advertising campaigns by predicting the clicks, have become essential for businesses. For this reason, predicting whether an advertisement will receive a click fromthe user or not attracts the attention of researchers from the both industry and academia. In this capstone project, the click prediction is studied by using Avazu’s click logs dataset. The effects of having high cardinality categorical features and imbalanced data are examined during data preprocessing phase and then relevant features are selected to be used in modeling. The methods that are used for this classification problem are decision trees, random forest, k-nearest neighbor, extreme gradient boosting, and logistic regression. According to the results of the study, extreme gradient boosting shows the best performance. | |
| dc.identifier.citation | Uncu, N. T. (2021). Ad Click Prediction Using Machine Learning Algorithms. MEF Üniversitesi Fen Bilimleri Enstitüsü, Büyük Veri Analitiği Yüksek Lisans Programı. ss. 1-28 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.11779/1701 | |
| dc.language.iso | en | |
| dc.publisher | MEF Üniversitesi Fen Bilimleri Enstitüsü | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.subject | Tıklama Tahminleme, Karar Ağacı, Rastgele Orman, k-En Yakın Komşuluk, Ekstrem Grandyan Artırma, Lojistik Regresyon | |
| dc.title | Ad Click Prediction Using Machine Learning Algorithms | |
| dc.title.alternative | Makine öğrenimi algoritmaları ile reklam tıklama tahminleme | |
| dc.type | Master's Degree Project | |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Uncu, Nazlı | |
| gdc.author.institutional | Küçükaydın, Hande | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::thesis::master thesis | |
| gdc.description.department | Lisansüstü Eğitim Enstitüsü, Büyük Veri Analitiği Yüksek Lisans Programı | |
| gdc.description.publicationcategory | YL-Bitirme Projesi | |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 1-28 | |
| gdc.description.wosquality | N/A | |
| relation.isAuthorOfPublication | dd669147-971f-4d2a-af0a-4e0e8aa9bd94 | |
| relation.isAuthorOfPublication.latestForDiscovery | dd669147-971f-4d2a-af0a-4e0e8aa9bd94 | |
| relation.isOrgUnitOfPublication | 636850bf-e58c-4b59-bcf0-fa7418bb7977 | |
| relation.isOrgUnitOfPublication | 0d54cd31-4133-46d5-b5cc-280b2c077ac3 | |
| relation.isOrgUnitOfPublication | a6e60d5c-b0c7-474a-b49b-284dc710c078 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 636850bf-e58c-4b59-bcf0-fa7418bb7977 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- FBE_BüyükVeriAnalitiği_NazlıTuğçeUncu.pdf
- Size:
- 1.51 MB
- Format:
- Adobe Portable Document Format
- Description:
- YL-Proje Dosyası
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 0 B
- Format:
- Item-specific license agreed upon to submission
- Description: