Ad Click Prediction Using Machine Learning Algorithms

dc.contributor.advisor Hande Küçükaydın
dc.contributor.author Uncu, Nazlı Tuğçe
dc.date.accessioned 2021-12-14T11:21:14Z
dc.date.available 2021-12-14T11:21:14Z
dc.date.issued 2021
dc.description.abstract Online advertising has a great potential to boost business’ revenue. One of the key metrics that defines the success of online ad campaigns is click through rate (CTR) which indicates the total number of clicks received in relation to the total impression. Therefore, the click prediction systems, which have the aim of increasing the click through rates of online advertising campaigns by predicting the clicks, have become essential for businesses. For this reason, predicting whether an advertisement will receive a click fromthe user or not attracts the attention of researchers from the both industry and academia. In this capstone project, the click prediction is studied by using Avazu’s click logs dataset. The effects of having high cardinality categorical features and imbalanced data are examined during data preprocessing phase and then relevant features are selected to be used in modeling. The methods that are used for this classification problem are decision trees, random forest, k-nearest neighbor, extreme gradient boosting, and logistic regression. According to the results of the study, extreme gradient boosting shows the best performance.
dc.identifier.citation Uncu, N. T. (2021). Ad Click Prediction Using Machine Learning Algorithms. MEF Üniversitesi Fen Bilimleri Enstitüsü, Büyük Veri Analitiği Yüksek Lisans Programı. ss. 1-28
dc.identifier.uri https://hdl.handle.net/20.500.11779/1701
dc.language.iso en
dc.publisher MEF Üniversitesi Fen Bilimleri Enstitüsü
dc.rights info:eu-repo/semantics/openAccess
dc.subject Tıklama Tahminleme, Karar Ağacı, Rastgele Orman, k-En Yakın Komşuluk, Ekstrem Grandyan Artırma, Lojistik Regresyon
dc.title Ad Click Prediction Using Machine Learning Algorithms
dc.title.alternative Makine öğrenimi algoritmaları ile reklam tıklama tahminleme
dc.type Master's Degree Project
dspace.entity.type Publication
gdc.author.institutional Uncu, Nazlı
gdc.author.institutional Küçükaydın, Hande
gdc.coar.access open access
gdc.coar.type text::thesis::master thesis
gdc.description.department Lisansüstü Eğitim Enstitüsü, Büyük Veri Analitiği Yüksek Lisans Programı
gdc.description.publicationcategory YL-Bitirme Projesi
gdc.description.scopusquality N/A
gdc.description.startpage 1-28
gdc.description.wosquality N/A
relation.isAuthorOfPublication dd669147-971f-4d2a-af0a-4e0e8aa9bd94
relation.isAuthorOfPublication.latestForDiscovery dd669147-971f-4d2a-af0a-4e0e8aa9bd94
relation.isOrgUnitOfPublication 636850bf-e58c-4b59-bcf0-fa7418bb7977
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 636850bf-e58c-4b59-bcf0-fa7418bb7977

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FBE_BüyükVeriAnalitiği_NazlıTuğçeUncu.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format
Description:
YL-Proje Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: