Audio Source Separation Using Variational Autoencoders and Weak Class Supervision
| dc.contributor.author | Kırbız, Serap | |
| dc.contributor.author | Karamatlı, Ertuğ | |
| dc.contributor.author | Cemgil, Ali Taylan | |
| dc.date.accessioned | 2019-08-23T05:48:05Z | |
| dc.date.available | 2019-08-23T05:48:05Z | |
| dc.date.issued | 2019 | |
| dc.description.WoSDocumentType | Article | |
| dc.description.WoSIndexDate | 2019 | |
| dc.description.WoSInternationalCollaboration | Uluslararası işbirliği ile yapılmayan - HAYIR | |
| dc.description.abstract | In this letter, we propose a source separation method that is trained by observing the mixtures and the class labels of the sources present in the mixture without any access to isolated sources. Since our method does not require source class labels for every time-frequency bin but only a single label for each source constituting the mixture signal, we call this scenario as weak class supervision. We associate a variational autoencoder (VAE) with each source class within a non negative (compositional) model. Each VAE provides a prior model to identify the signal from its associated class in a sound mixture. After training the model on mixtures, we obtain a generative model for each source class and demonstrate our method on one-second mixtures of utterances of digits from 0 to 9. We show that the separation performance obtained by source class supervision is as good as the performance obtained by source signal supervision. | |
| dc.identifier.citation | Karamatli, E., Cemgil, AT., & Kırbız, S. (2019). Audio source separation using variational autoencoders and weak class supervision. IEEE Signal Processing Letters. 26(9), 1349-1353. | |
| dc.identifier.issn | 1070-9908 | |
| dc.identifier.issn | 1558-2361 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.11779/1128 | |
| dc.language.iso | en | |
| dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | |
| dc.relation.ispartof | IEEE Signal Processing Letters | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Weak supervision | |
| dc.subject | Source separation | |
| dc.subject | Variational autoencoders | |
| dc.title | Audio Source Separation Using Variational Autoencoders and Weak Class Supervision | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| gdc.author.id | Ertuğ Karamatlı / 0000-0001-8839-0821 | |
| gdc.author.id | Serap Kırbız / 0000-0001-7718-3683 | |
| gdc.author.institutional | Kırbız, Serap | |
| gdc.author.institutional | Kırbız, Serap | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü | |
| gdc.description.endpage | 1353 | |
| gdc.description.issue | 9 | |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 1349 | |
| gdc.description.volume | 26 | |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.wos | WOS:000480311900003 | |
| gdc.publishedmonth | Eylül | |
| gdc.wos.citedcount | 21 | |
| gdc.wos.publishedmonth | Eylül | |
| gdc.wos.yokperiod | YÖK - 2019-20 | |
| relation.isAuthorOfPublication | 552e4b0c-955f-4b93-925b-08cb2e6c5cc0 | |
| relation.isAuthorOfPublication.latestForDiscovery | 552e4b0c-955f-4b93-925b-08cb2e6c5cc0 | |
| relation.isOrgUnitOfPublication | de19334f-6a5b-4f7b-9410-9433c48d1e5a | |
| relation.isOrgUnitOfPublication | 0d54cd31-4133-46d5-b5cc-280b2c077ac3 | |
| relation.isOrgUnitOfPublication | a6e60d5c-b0c7-474a-b49b-284dc710c078 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | de19334f-6a5b-4f7b-9410-9433c48d1e5a |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 08769885.pdf
- Size:
- 506.35 KB
- Format:
- Adobe Portable Document Format
- Description:
- Yayıncı Sürümü - Makale
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.44 KB
- Format:
- Item-specific license agreed upon to submission
- Description: