Audio Source Separation Using Variational Autoencoders and Weak Class Supervision

dc.contributor.author Kırbız, Serap
dc.contributor.author Karamatlı, Ertuğ
dc.contributor.author Cemgil, Ali Taylan
dc.date.accessioned 2019-08-23T05:48:05Z
dc.date.available 2019-08-23T05:48:05Z
dc.date.issued 2019
dc.description.WoSDocumentType Article
dc.description.WoSIndexDate 2019
dc.description.WoSInternationalCollaboration Uluslararası işbirliği ile yapılmayan - HAYIR
dc.description.abstract In this letter, we propose a source separation method that is trained by observing the mixtures and the class labels of the sources present in the mixture without any access to isolated sources. Since our method does not require source class labels for every time-frequency bin but only a single label for each source constituting the mixture signal, we call this scenario as weak class supervision. We associate a variational autoencoder (VAE) with each source class within a non negative (compositional) model. Each VAE provides a prior model to identify the signal from its associated class in a sound mixture. After training the model on mixtures, we obtain a generative model for each source class and demonstrate our method on one-second mixtures of utterances of digits from 0 to 9. We show that the separation performance obtained by source class supervision is as good as the performance obtained by source signal supervision.
dc.identifier.citation Karamatli, E., Cemgil, AT., & Kırbız, S. (2019). Audio source separation using variational autoencoders and weak class supervision. IEEE Signal Processing Letters. 26(9), 1349-1353.
dc.identifier.issn 1070-9908
dc.identifier.issn 1558-2361
dc.identifier.uri https://hdl.handle.net/20.500.11779/1128
dc.language.iso en
dc.publisher Institute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartof IEEE Signal Processing Letters
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Weak supervision
dc.subject Source separation
dc.subject Variational autoencoders
dc.title Audio Source Separation Using Variational Autoencoders and Weak Class Supervision
dc.type Article
dspace.entity.type Publication
gdc.author.id Ertuğ Karamatlı / 0000-0001-8839-0821
gdc.author.id Serap Kırbız / 0000-0001-7718-3683
gdc.author.institutional Kırbız, Serap
gdc.author.institutional Kırbız, Serap
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü
gdc.description.endpage 1353
gdc.description.issue 9
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
gdc.description.scopusquality Q1
gdc.description.startpage 1349
gdc.description.volume 26
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.wos WOS:000480311900003
gdc.publishedmonth Eylül
gdc.wos.citedcount 21
gdc.wos.publishedmonth Eylül
gdc.wos.yokperiod YÖK - 2019-20
relation.isAuthorOfPublication 552e4b0c-955f-4b93-925b-08cb2e6c5cc0
relation.isAuthorOfPublication.latestForDiscovery 552e4b0c-955f-4b93-925b-08cb2e6c5cc0
relation.isOrgUnitOfPublication de19334f-6a5b-4f7b-9410-9433c48d1e5a
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery de19334f-6a5b-4f7b-9410-9433c48d1e5a

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
08769885.pdf
Size:
506.35 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı Sürümü - Makale

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: