Joint Source Separation and Classification Using Variational Autoencoders

dc.contributor.author Karamatlı, Ertuğ
dc.contributor.author Kırbız, Serap
dc.contributor.author Hızlı, Çağlar
dc.date.accessioned 2021-10-09T07:24:28Z
dc.date.available 2021-10-09T07:24:28Z
dc.date.issued 2020
dc.description.abstract In this paper, we propose a novel multi-task variational auto encoder (VAE) based approach for joint source separation and classification. The network uses a probabilistic encoder for each sources to map the input data to latent space. The latent representation is then used by a probabilistic decoder for the two tasks: source separation and source classification. Throughout a variety of experiments performed on various image and audio datasets, source separation performance of our method is as good as the method that performs source separation under source class supervision. In addition, the proposed method does not require the class labels and can predict the labels.
dc.description.sponsorship Istanbul Medipol Univ
dc.identifier.citation Ç. Hızlı, E. Karamatlı, A. T. Cemgil and S. Kırbız, (5-7 Oct. 2020). Joint Source Separation and Classification Using Variational Autoencoders," 2020 28th Signal Processing and Communications Applications Conference (SIU), pp. 1-4, doi: 10.1109/SIU49456.2020.9302092. ‌
dc.identifier.doi 10.1109/siu49456.2020.9302092
dc.identifier.issn 2165-0608
dc.identifier.scopus 2-s2.0-85100295613
dc.identifier.uri https://hdl.handle.net/20.500.11779/1571
dc.identifier.uri https://doi.org/10.1109/siu49456.2020.9302092
dc.language.iso tr
dc.publisher IEEE
dc.relation.ispartof 2020 28th Signal Processing and Communications Applications Conference (SIU)
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Decoding
dc.subject Noma
dc.subject Nanoelectromechanical systems
dc.subject Source separation
dc.subject Graphics processing units
dc.subject Task analysis
dc.subject Probabilistic logic
dc.title Joint Source Separation and Classification Using Variational Autoencoders
dc.title.alternative Değişimli oto-kodlayıcılar kullanılarak birleşik kaynak ayrıştırma ve sınıflandırma
dc.type Conference Object
dspace.entity.type Publication
gdc.author.id Serap Kırbız / 0000-0001-7718-3683
gdc.author.institutional Kırbız, Serap
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 1-4
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W3120627576
gdc.identifier.wos WOS:000653136100066
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.6374474E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.580767E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.17
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 0
gdc.publishedmonth Ekim
gdc.relation.journal 2020 28th Signal Processing and Communications Applications Conference (SIU)
gdc.scopus.citedcount 0
gdc.virtual.author Kırbız, Serap
gdc.wos.citedcount 0
gdc.wos.collaboration Uluslararası işbirliği ile yapılmayan - HAYIR
gdc.wos.documenttype Proceedings Paper
gdc.wos.indexdate 2020
gdc.wos.publishedmonth Ekim
gdc.yokperiod YÖK - 2020-21
relation.isAuthorOfPublication 552e4b0c-955f-4b93-925b-08cb2e6c5cc0
relation.isAuthorOfPublication.latestForDiscovery 552e4b0c-955f-4b93-925b-08cb2e6c5cc0
relation.isOrgUnitOfPublication de19334f-6a5b-4f7b-9410-9433c48d1e5a
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery de19334f-6a5b-4f7b-9410-9433c48d1e5a

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Joint_Source_Separation_and_Classication_Using_Variational_Autoencoders.pdf
Size:
452.64 KB
Format:
Adobe Portable Document Format
Description:
Proceedings Paper

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: