Text Classification Using Apache Spark

dc.contributor.advisor Özlük, Özgür
dc.contributor.author Azizoğlu, Umut Rezan
dc.date.accessioned 2019-11-12T13:42:00Z
dc.date.available 2019-11-12T13:42:00Z
dc.date.issued 2018
dc.description.abstract One of the biggest problems of enterprises which are marketplace e-commerce business model with social platform; The improper communication of their social platform is the negative impact of the customer experience and the damage of the brand's value both materially and morally. As the number of daily commentaries is in numbers that cannot be read manually with optimal human resources in terms of company profitability, the interpretation modules in social market places are left unconscious. With this Project; established a model that prevents sentences that spoil the customer experience in their social platforms. Both data preparation and machine learning model were developed on Databricks notebook, using the apache spark platform with SparkML libraries and Pyspark language. The “Text Classification” approach is adopted when determining the model.
dc.description.abstract Sosyal platformu bulunan,elektronik pazar yeri iş modeliyle çalışan girişimlerin, en büyük problemlerinden biri; sosyal mecralarında ki uygunsuz yorumların, müşteri deneyimini olumsuz etki etmesi ve girişimin marka değerinin hem maddi hem manevi zarar görmesidir. Günlük yorum sayılarının şirket karlılığı açısından, optimal insan kaynağı ile manuel olarak okunamayacak sayılarda olması nedeniyle çoğunlukla sosyal pazar yerlerinde ki yorumlaşma modülleri deyim yerindeyse başıboş bırakılmaktadır. Bu Proje ile; bu durumu çözmek amacıyla girişimlerin sosyal mecralarında müşteri deneyimini bozan cümleleri engelleyen bir model geliştirilmiştir. Hem mevcut datanın hazırlığı, hem de Makine öğrenmesi modeli; databricks notebook kullanılarak, Apache Spark üzerinden Python(Pyspark) dili ile sparkml kütüphaneleri kullanılarak geliştirilmiştir. Model belirlenirken metin sınıflandırma yaklaşımı benimsenmiştir.
dc.identifier.citation Azizoğlu, UR. (2018). Text classification using apache spark, MEF Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye
dc.identifier.uri https://hdl.handle.net/20.500.11779/1169
dc.language.iso en
dc.publisher MEF Üniversitesi, Fen Bilimleri Enstitüsü
dc.rights info:eu-repo/semantics/openAccess
dc.subject Text Classification
dc.subject Sentiment Analysis
dc.subject Apache Spark
dc.subject Python (Pyspark)
dc.subject Databricks
dc.subject Metin Kategorileştirme
dc.subject Sentiment Analizi
dc.title Text Classification Using Apache Spark
dc.title.alternative Apache Spark İle metin Sınıflandırma
dc.type Master's Degree Project
dspace.entity.type Publication
gdc.author.institutional Azizoğlu, Umut Rezan
gdc.author.institutional Özlük, Özgür
gdc.coar.access open access
gdc.coar.type text::thesis::master thesis
gdc.description.department Lisansüstü Eğitim Enstitüsü, Büyük Veri Analitiği Yüksek Lisans Programı
gdc.description.publicationcategory YL-Bitirme Projesi
gdc.description.scopusquality N/A
gdc.description.wosquality N/A
relation.isAuthorOfPublication 78d216c1-2c30-45e3-9ba3-2d8f3acca8b6
relation.isAuthorOfPublication.latestForDiscovery 78d216c1-2c30-45e3-9ba3-2d8f3acca8b6
relation.isOrgUnitOfPublication 636850bf-e58c-4b59-bcf0-fa7418bb7977
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 636850bf-e58c-4b59-bcf0-fa7418bb7977

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Umut Rezan Azizoğlu.pdf
Size:
623.04 KB
Format:
Adobe Portable Document Format
Description:
YL-Proje Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: