Credit Risk Estimation With Machine Learning and Artifical Neural Networks Algorithms
Loading...
Date
2021
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
MEF Üniversitesi Fen Bilimleri Enstitüsü
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Credit risk assessment is very important for financial institutions today. The probability that a financial institution customer will not be able to repay the credits used is called credit risk. Financial institutions accept or reject credit applications. Institutions evaluate credit applications according to the personal information of the customers, life situation, loyalty, etc. If these data are below various values, financial institutions reject the application. The organization rejected the application because the client anticipated financial difficulties in the future. In the project, "German Credit" data on the Kaggle platform was used. In this data set, customers information and credit status are found as "good" and "bad". By using these data, it is aimed to evaluate new credit application requests. The data set used was passed through various pre-data processing steps and models such as Logistic Regression, Artificial Neural Networks, K-NN, Support Vector, Naïve Bayes, Decision Trees, Random Forest, LGBM and XGB were trained. The highest accuracy is achieved using the XGB model. (0.74)
Description
Keywords
Credit Risk, Risk Analysis, German Credit Data, Machine Learning
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Yıldız, İ. (2021). Credit Risk Estimation with Machine Learning and Artifical Neural Networks Algorithms. MEF Üniversitesi Fen Bilimleri Enstitüsü, Bilişim Teknolojileri Yüksek Lisans Programı. ss. 1-28
WoS Q
N/A
Scopus Q
N/A
Source
Volume
Issue
Start Page
1-28