Cnn-Based Emotion Recognition Using Data Augmentation and Preprocessing Methods

dc.contributor.author Toktaş, Tolga
dc.contributor.author Kırbız, Serap
dc.contributor.author Kayaoğlu, Bora
dc.date.accessioned 2023-12-19T06:03:37Z
dc.date.available 2023-12-19T06:03:37Z
dc.date.issued 2023
dc.description.abstract In this paper, a system that recognizes emotion from human faces is designed using Convolutional Neural Networks (CNN). CNN is known to perform well when trained with a large database. The lack of large and balanced publicly available databases that can be used by deep learning methods for emotion recognition is still a challenge. To overcome this problem, the number of data is increased by merging FER+, CK+ and KDEF databases; and preprocessing is applied to the face images in order to reduce the variations in the database. Data augmentation methods are used to reduce the imbalance in the data distribution that still remains despite the increasing number of data in the merged database. The CNN-based method developed using database merging, image preprocessing and data augmentation, achieved emotion recognition with 80% accuracy.
dc.identifier.citation Kayaoğlu, B., Toktaş, T., & Kırbız, S. (2023, October). CNN-Based Emotion Recognition using Data Augmentation and Preprocessing Methods. In 2023 Innovations in Intelligent Systems and Applications Conference (ASYU) (pp. 1-4).
dc.identifier.doi 10.1109/ASYU58738.2023.10296784
dc.identifier.isbn 9798350306590
dc.identifier.scopus 2-s2.0-85178277713
dc.identifier.uri https://doi.org/10.1109/ASYU58738.2023.10296784
dc.identifier.uri https://hdl.handle.net/20.500.11779/2151
dc.language.iso tr
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.relation.ispartof 2023 Innovations in Intelligent Systems and Applications Conference (ASYU)
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Deep learning
dc.subject Convolutional neural network
dc.subject Emotion recognition
dc.subject Pre-processing
dc.subject Data augmentation
dc.title Cnn-Based Emotion Recognition Using Data Augmentation and Preprocessing Methods
dc.title.alternative Veri artırma ve işleme yöntemleri kullanarak evrişimli sinir ağı tabanlı duygu tanıma
dc.type Conference Object
dspace.entity.type Publication
gdc.author.institutional Kayaoğlu, Bora
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W4388041566
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.7121292E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.5465372E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.83328043
gdc.openalex.normalizedpercentile 0.69
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 1
gdc.publishedmonth Ekim
gdc.relation.journal 2023 Innovations in Intelligent Systems and Applications Conference, ASYU 2023
gdc.scopus.citedcount 1
gdc.virtual.author Kayaoğlu, Bora
gdc.virtual.author Kırbız, Serap
gdc.wos.publishedmonth Ekim
gdc.yokperiod YÖK - 2023-24
relation.isAuthorOfPublication 67e44fed-a1e5-4564-9d93-31419c1ddb40
relation.isAuthorOfPublication 552e4b0c-955f-4b93-925b-08cb2e6c5cc0
relation.isAuthorOfPublication.latestForDiscovery 67e44fed-a1e5-4564-9d93-31419c1ddb40
relation.isOrgUnitOfPublication de19334f-6a5b-4f7b-9410-9433c48d1e5a
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery de19334f-6a5b-4f7b-9410-9433c48d1e5a

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
CNN-Based_Emotion_Recognition_using_Data_Augmentation_and_Preprocessing_Methods.pdf
Size:
486.97 KB
Format:
Adobe Portable Document Format
Description:
Full Text - Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: