Quantum Fp-Growth for Association Rules Mining

dc.contributor.author Belkadi, Widad Hassina
dc.contributor.author Drias, Yassine
dc.contributor.author Drias, Habiba
dc.date.accessioned 2024-10-05T18:38:43Z
dc.date.available 2024-10-05T18:38:43Z
dc.date.issued 2024
dc.description.abstract Quantum computing, based on quantum mechanics, promises revolutionary computational power by exploiting quantum states. It provides significant advantages over classical computing regarding time complexity, enabling faster and more efficient problem-solving. This paper explores the application of quantum computing in frequent itemset mining and association rules mining, a crucial task in data mining and pattern recognition. We propose a novel algorithm called Quantum FP-Growth (QFP-Growth) for mining frequent itemsets. The QFP-Growth algorithm follows the traditional FP-Growth approach, constructing a QF-list, then the QFP-tree, a quantum radix tree, to efficiently mine frequent itemsets from large datasets. We present a detailed analysis of each step in the QFP-Growth algorithm, providing insights into its time complexity and computational efficiency. Our algorithm outperforms classical FP-Growth with a quadratic improvement in error dependence, showcasing the power of quantum algorithms in data mining. To validate the effectiveness of our approach, we conducted experiments using the IBM QASM simulator, qiskit. The results demonstrate the efficiency and effectiveness of our QFP-Growth algorithm in mining frequent itemsets from a transactional database.
dc.identifier.doi 10.1007/978-3-031-59318-5_8
dc.identifier.isbn 9783031602740
dc.identifier.isbn 9783031593185
dc.identifier.isbn 9783031593178
dc.identifier.issn 3004-958X
dc.identifier.uri https://doi.org/10.1007/978-3-031-59318-5_8
dc.identifier.uri https://hdl.handle.net/20.500.11779/2355
dc.language.iso en
dc.publisher Springer international Publishing Ag
dc.relation.ispartof Symposium on Quantum Sciences, Applications and Challenges (QSAC) -- SEP 24-25, 2023 -- Alger Acad Sci & Tech, Algiers, ALGERIA
dc.relation.ispartofseries Information Systems Engineering and Management
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Quantum machine learning
dc.subject Frequent itemset mining
dc.subject Association rules mining
dc.subject Fp-growth
dc.subject Ibm qasm simulator
dc.subject Qiskit
dc.title Quantum Fp-Growth for Association Rules Mining
dc.type Conference Object
dspace.entity.type Publication
gdc.author.institutional Drias, Yassine
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 106
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 91
gdc.description.volume 2
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W4399593838
gdc.identifier.wos WOS:001298001300008
gdc.index.type WoS
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.9478422E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 1.66054711
gdc.openalex.normalizedpercentile 0.77
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.publishedmonth Haziran
gdc.virtual.author Drias, Yassine
gdc.wos.citedcount 1
gdc.wos.publishedmonth Haziran
gdc.yokperiod YÖK - 2023-24
local.message.claim 2024-10-23T16:40:49.194+0300
local.message.claim |rp00139
local.message.claim |submit_approve
local.message.claim |dc_contributor_author
local.message.claim |None
relation.isAuthorOfPublication fc428ec9-7ded-49de-98b3-c32be0d42348
relation.isAuthorOfPublication.latestForDiscovery fc428ec9-7ded-49de-98b3-c32be0d42348
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files