Financial Inputs Prediction with Machine Learning and Covariance Matrix Applications

dc.contributor.author Benli, Harun
dc.contributor.author Gunes, Peri
dc.contributor.author Ulkgun, Mert
dc.contributor.author Cakar, Tuna
dc.date.accessioned 2025-10-05T16:35:47Z
dc.date.available 2025-10-05T16:35:47Z
dc.date.issued 2025
dc.description Fuzhou University; IEEE
dc.description.abstract Reliable estimation of the time-varying covariance matrix of asset returns is indispensable for portfolio construction, risk budgeting, and automated advisory services. Conventional estimators-rolling-window sample covariances, EWMA filters, and GARCH families-remain anchored to historical prices and therefore adapt slowly when market conditions pivot. To overcome this latency, we propose an end-to-end, machine-learning-driven framework that forecasts future covariances directly from high-frequency equity data, largely decoupling risk estimation from past observations. Our pipeline ingests heterogeneous stock feeds through a real-time API, applies error-minimising imputation (forward/backward fill, spline, VAR, wavelet, and co-kriging), and standardises returns via empirically selected scaling schemes. The processed features are then fed to a model zoo comprising linear and penalised regressions, tree ensembles (Random Forest, XGBoost, LightGBM, CatBoost), and kernel-based Support Vector Regression. Weekly walk-forward evaluation on a universe of Turkish insurance equities shows that LightGBM and SVR cut out-of-sample covariance prediction error by up to 35 % versus classical benchmarks. We embed the predicted matrices into five allocation engines-Markowitz mean-variance, Black-Litterman, minimum-variance, Risk Parity, and CVaR optimisation-demonstrating that Risk Parity delivers the most consistent variance reduction across 15 stock pairs, while Black-Litterman excels for idiosyncratic combinations such as ANSGR-AKGRT. A granular analysis reveals that day-to-day sign changes in returns create structural breaks that generic regressors miss; augmenting the architecture with a volatility-state classifier and regime-specific learners markedly sharpens turning-point detection. Beyond statistical gains, the framework is production-ready: it is fully implemented in Python, runs on cloud notebooks, and plugs into robo-advisory dashboards. The study thus bridges academic advances in covariance prediction with operational portfolio management, paving the way for broader cross-sector deployment and future research on deep sequential models, transaction-cost awareness, and multi-asset scalability. © 2025 Elsevier B.V., All rights reserved.
dc.identifier.doi 10.1109/SEAI65851.2025.11108816
dc.identifier.isbn 9798331513627
dc.identifier.isbn 9798331513610
dc.identifier.scopus 2-s2.0-105015443954
dc.identifier.uri https://doi.org/10.1109/SEAI65851.2025.11108816
dc.language.iso en
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.relation.ispartof -- 5th IEEE International Conference on Software Engineering and Artificial Intelligence, SEAI 2025 -- Fuzhou -- 211452
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Based Covariance Estimation en_US
dc.subject Markowitz Modern Portfolio Theory en_US
dc.subject Robo-Advisory Applications en_US
dc.subject Portfolio Optimization en_US
dc.subject Benchmarking en_US
dc.subject Budget Control en_US
dc.subject Commerce en_US
dc.subject Costs en_US
dc.subject Covariance Matrix en_US
dc.subject Decision Trees en_US
dc.subject Electronic Trading en_US
dc.subject Financial Markets en_US
dc.subject Forestry en_US
dc.subject Insurance en_US
dc.subject Investments en_US
dc.subject Random Forests en_US
dc.subject Risk Assessment en_US
dc.subject Risk Management en_US
dc.subject Risk Perception en_US
dc.subject Statistics en_US
dc.subject Support Vector Regression en_US
dc.subject Covariance Estimation en_US
dc.subject Covariance Matrices en_US
dc.subject Machine-Learning en_US
dc.subject Sample Covariances en_US
dc.subject Forecasting en_US
dc.title Financial Inputs Prediction with Machine Learning and Covariance Matrix Applications
dc.type Conference Object
dspace.entity.type Publication
gdc.author.institutional Çakar, Tuna
gdc.author.scopusid 60091583200
gdc.author.scopusid 60090623300
gdc.author.scopusid 60091197500
gdc.author.scopusid 56329345400
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 10
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 7
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W7084073103
gdc.identifier.wos WOS:001572943400002
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.popularity 2.0809511E-10
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.63
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 0
gdc.publishedmonth Ağustos
gdc.scopus.citedcount 0
gdc.virtual.author Çakar, Tuna
gdc.wos.citedcount 0
gdc.yokperiod YÖK - 2024-25
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication.latestForDiscovery a6e60d5c-b0c7-474a-b49b-284dc710c078

Files