Financial Inputs Prediction with Machine Learning and Covariance Matrix Applications
| dc.contributor.author | Benli, Harun | |
| dc.contributor.author | Gunes, Peri | |
| dc.contributor.author | Ulkgun, Mert | |
| dc.contributor.author | Cakar, Tuna | |
| dc.date.accessioned | 2025-10-05T16:35:47Z | |
| dc.date.available | 2025-10-05T16:35:47Z | |
| dc.date.issued | 2025 | |
| dc.description | Fuzhou University; IEEE | |
| dc.description.abstract | Reliable estimation of the time-varying covariance matrix of asset returns is indispensable for portfolio construction, risk budgeting, and automated advisory services. Conventional estimators-rolling-window sample covariances, EWMA filters, and GARCH families-remain anchored to historical prices and therefore adapt slowly when market conditions pivot. To overcome this latency, we propose an end-to-end, machine-learning-driven framework that forecasts future covariances directly from high-frequency equity data, largely decoupling risk estimation from past observations. Our pipeline ingests heterogeneous stock feeds through a real-time API, applies error-minimising imputation (forward/backward fill, spline, VAR, wavelet, and co-kriging), and standardises returns via empirically selected scaling schemes. The processed features are then fed to a model zoo comprising linear and penalised regressions, tree ensembles (Random Forest, XGBoost, LightGBM, CatBoost), and kernel-based Support Vector Regression. Weekly walk-forward evaluation on a universe of Turkish insurance equities shows that LightGBM and SVR cut out-of-sample covariance prediction error by up to 35 % versus classical benchmarks. We embed the predicted matrices into five allocation engines-Markowitz mean-variance, Black-Litterman, minimum-variance, Risk Parity, and CVaR optimisation-demonstrating that Risk Parity delivers the most consistent variance reduction across 15 stock pairs, while Black-Litterman excels for idiosyncratic combinations such as ANSGR-AKGRT. A granular analysis reveals that day-to-day sign changes in returns create structural breaks that generic regressors miss; augmenting the architecture with a volatility-state classifier and regime-specific learners markedly sharpens turning-point detection. Beyond statistical gains, the framework is production-ready: it is fully implemented in Python, runs on cloud notebooks, and plugs into robo-advisory dashboards. The study thus bridges academic advances in covariance prediction with operational portfolio management, paving the way for broader cross-sector deployment and future research on deep sequential models, transaction-cost awareness, and multi-asset scalability. © 2025 Elsevier B.V., All rights reserved. | |
| dc.identifier.doi | 10.1109/SEAI65851.2025.11108816 | |
| dc.identifier.isbn | 9798331513627 | |
| dc.identifier.isbn | 9798331513610 | |
| dc.identifier.scopus | 2-s2.0-105015443954 | |
| dc.identifier.uri | https://doi.org/10.1109/SEAI65851.2025.11108816 | |
| dc.language.iso | en | |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
| dc.relation.ispartof | -- 5th IEEE International Conference on Software Engineering and Artificial Intelligence, SEAI 2025 -- Fuzhou -- 211452 | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Based Covariance Estimation | en_US |
| dc.subject | Markowitz Modern Portfolio Theory | en_US |
| dc.subject | Robo-Advisory Applications | en_US |
| dc.subject | Portfolio Optimization | en_US |
| dc.subject | Benchmarking | en_US |
| dc.subject | Budget Control | en_US |
| dc.subject | Commerce | en_US |
| dc.subject | Costs | en_US |
| dc.subject | Covariance Matrix | en_US |
| dc.subject | Decision Trees | en_US |
| dc.subject | Electronic Trading | en_US |
| dc.subject | Financial Markets | en_US |
| dc.subject | Forestry | en_US |
| dc.subject | Insurance | en_US |
| dc.subject | Investments | en_US |
| dc.subject | Random Forests | en_US |
| dc.subject | Risk Assessment | en_US |
| dc.subject | Risk Management | en_US |
| dc.subject | Risk Perception | en_US |
| dc.subject | Statistics | en_US |
| dc.subject | Support Vector Regression | en_US |
| dc.subject | Covariance Estimation | en_US |
| dc.subject | Covariance Matrices | en_US |
| dc.subject | Machine-Learning | en_US |
| dc.subject | Sample Covariances | en_US |
| dc.subject | Forecasting | en_US |
| dc.title | Financial Inputs Prediction with Machine Learning and Covariance Matrix Applications | |
| dc.type | Conference Object | |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Çakar, Tuna | |
| gdc.author.scopusid | 60091583200 | |
| gdc.author.scopusid | 60090623300 | |
| gdc.author.scopusid | 60091197500 | |
| gdc.author.scopusid | 56329345400 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.description.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | |
| gdc.description.endpage | 10 | |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 7 | |
| gdc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W7084073103 | |
| gdc.identifier.wos | WOS:001572943400002 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.5942106E-9 | |
| gdc.oaire.popularity | 2.0809511E-10 | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.63 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 2 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.publishedmonth | Ağustos | |
| gdc.scopus.citedcount | 0 | |
| gdc.virtual.author | Çakar, Tuna | |
| gdc.wos.citedcount | 0 | |
| gdc.yokperiod | YÖK - 2024-25 | |
| relation.isAuthorOfPublication | 10f8ce3b-94c2-40f0-9381-0725723768fe | |
| relation.isAuthorOfPublication.latestForDiscovery | 10f8ce3b-94c2-40f0-9381-0725723768fe | |
| relation.isOrgUnitOfPublication | a6e60d5c-b0c7-474a-b49b-284dc710c078 | |
| relation.isOrgUnitOfPublication | 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3 | |
| relation.isOrgUnitOfPublication | 0d54cd31-4133-46d5-b5cc-280b2c077ac3 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | a6e60d5c-b0c7-474a-b49b-284dc710c078 |
