Prediction of Credit Card Default

dc.contributor.advisor Utku Koç
dc.contributor.author Akalın, Selçuk
dc.date.accessioned 2021-12-14T11:21:15Z
dc.date.available 2021-12-14T11:21:15Z
dc.date.issued 2021
dc.description.abstract As profitable customer acquisition becomes more and more critical for the banking sector in terms of competition, the requirement to predict customer defaults with different machine learning algorithms is increasing. Thanks to similar practices, possible damages can be prevented. Due to the rapid change of machine learning with the changing technology, the fields of application and development in different sectors are also changing and developing rapidly. In this study, the aim is to make a comparison over model outcomes and making observations on outcomes to determine the areas that can be developed or researched with running different supervised and unsupervised machine learning algorithms on the final dataset gathered by doing following methods such as key points discovered in exploratory data analysis on an imbalanced credit card dataset, generating different features according to learned key points, eliminating imbalance with different oversampling and undersampling methods.
dc.identifier.citation Akalın, S. (2021). Prediction of Credit Card Default. MEF Üniversitesi Fen Bilimleri Enstitüsü, Büyük Veri Analitiği Yüksek Lisans Programı. ss. 1-31
dc.identifier.uri https://hdl.handle.net/20.500.11779/1720
dc.language.iso en
dc.publisher MEF Üniversitesi Fen Bilimleri Enstitüsü
dc.rights info:eu-repo/semantics/openAccess
dc.subject Exploratory Data Analysis, Machine Learning, Banking, Credit Cards, Default Prediction, Oversampling, Undersampling, SMOTE.
dc.title Prediction of Credit Card Default
dc.title.alternative Kredi kartı batık tahmini
dc.type Master's Degree Project
dspace.entity.type Publication
gdc.author.id Selçuk Akalın / 0000-0001-5241-6524
gdc.author.institutional Akalın, Selçuk
gdc.author.institutional Koç, Utku
gdc.coar.access open access
gdc.coar.type text::thesis::master thesis
gdc.description.department Lisansüstü Eğitim Enstitüsü, Büyük Veri Analitiği Yüksek Lisans Programı
gdc.description.publicationcategory YL-Bitirme Projesi
gdc.description.scopusquality N/A
gdc.description.startpage 1-31
gdc.description.wosquality N/A
relation.isAuthorOfPublication 033fab1f-fc1b-4bcd-a954-b68f6409c2dd
relation.isAuthorOfPublication.latestForDiscovery 033fab1f-fc1b-4bcd-a954-b68f6409c2dd
relation.isOrgUnitOfPublication 636850bf-e58c-4b59-bcf0-fa7418bb7977
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 636850bf-e58c-4b59-bcf0-fa7418bb7977

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: