Forecasting Organic Traffic With Different Source of Data

dc.contributor.advisor Özgür Özlük
dc.contributor.author Çolak, Mehtap
dc.date.accessioned 2021-12-14T11:21:14Z
dc.date.available 2021-12-14T11:21:14Z
dc.date.issued 2021
dc.description.abstract In this project, the results are compared using different data sets for the organic traffic forecasting of a website. Two different models were developed based on the data obtained from Google Search Console (GSC), Google Analytics (GA), Ahrefs and Google Trends and trained with XGBoost and Random Forest machine learning algorithms. Although the .. value and accuracy rate of the first model developed on the GSC, GA and Ahrefs data obtained between 2019-2020 was high; it is not suitable for predictive analysis because the data sets consist of dependent variables. The second model was developed with Google Trends data for brand and non-brand queries with the highest Impression value. The future trends of the relevant queries were predicted using the Prophet algorithm. Through this model, Impression values of the relevant website were estimated for the remainder of 2021.
dc.identifier.citation Çolak, M. (2021). Forecasting Organic Traffic with Different Source of Data. MEF Üniversitesi Fen Bilimleri Enstitüsü, Büyük Veri Analitiği Yüksek Lisans Programı. ss. 1-22
dc.identifier.uri https://hdl.handle.net/20.500.11779/1709
dc.language.iso en
dc.publisher MEF Üniversitesi Fen Bilimleri Enstitüsü
dc.rights info:eu-repo/semantics/openAccess
dc.subject Organic Traffic, Organic Traffic Forecasting, Predicting Website Traffic, Time Series Analysis, Google Search Console, Google Analytics, Google Trends, Random Forecast Regressor
dc.title Forecasting Organic Traffic With Different Source of Data
dc.title.alternative Farklı veri kaynakları ile organik trafik tahmini
dc.type Master's Degree Project
dspace.entity.type Publication
gdc.author.institutional Çolak, Mehtap
gdc.author.institutional Özlük, Özgür
gdc.coar.access open access
gdc.coar.type text::thesis::master thesis
gdc.description.department Lisansüstü Eğitim Enstitüsü, Büyük Veri Analitiği Yüksek Lisans Programı
gdc.description.publicationcategory YL-Bitirme Projesi
gdc.description.scopusquality N/A
gdc.description.startpage 1-22
gdc.description.wosquality N/A
relation.isAuthorOfPublication 78d216c1-2c30-45e3-9ba3-2d8f3acca8b6
relation.isAuthorOfPublication.latestForDiscovery 78d216c1-2c30-45e3-9ba3-2d8f3acca8b6
relation.isOrgUnitOfPublication 636850bf-e58c-4b59-bcf0-fa7418bb7977
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 636850bf-e58c-4b59-bcf0-fa7418bb7977

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: