Retail Data Predictive Analysis Using Machine Learning Models

dc.contributor.advisor Tuna Çakar
dc.contributor.author Güner, Müjde
dc.date.accessioned 2021-12-14T11:21:12Z
dc.date.available 2021-12-14T11:21:12Z
dc.date.issued 2020
dc.description.abstract Machine Learning (ML) is a popular field which deals with training the system with data (experience), performing some task (regression or classification) and evaluating the system with the desired performance metrics. ML automatically extracts useful and meaningful insights from the data. ML models for sales prediction applies computational intelligence in many real world applications such as stock market, production, economics, weather, retail, census analysis and so on. Sales prediction can be viewed as a regression problem and various algorithms can be applied. In this project, real life data analysis has been done to predict the sales for four categories of products like Cold Cereal, Bag Snacks, Oral Hygiene Products, and Frozen Pizza. Exploratory Data Analysis (EDA) has been applied to the dataset to make exact predictions even during an unpredictable environment. The different phases of EDA used in this project are Data Preprocessing and Analysis, Feature Selection and Feature Extraction, Model Building and Regression Analysis, Clustering, Time Series Analysis and Model Evaluation using the Performance Metrics. For outlier detection, InterQuartile Range (IQR) method is used. For Filter Based Feature Selection, Univariate Feature Analysis using SelectK-Best and SelectPercentile, Decision Tree Regressor method has been used. For Wrapper Based Feature Selection, Sequential Feature Selector method has been deployed. For Regression Analysis, various algorithms such as Linear Regression, XGBoost Regression and Support Vector Regression (SVR) are analyzed. K-Means Clustering Algorithm has been used on the dataset to generate 4 different clusters. In Time Series Analysis, the week end date and average weekly basket attributes are analyzed, and the sequential data has been rendered for a given time period of occurrence. In model evaluation phase, the Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), R2 and Adjusted R2 accuracy has been calculated and validated. The project has been implemented in an open source software called Anaconda which includes Jupyter Notebook platform for scientific computations. Python programming language with different packages such as Numpy, Pandas, Scikit learn has been used.
dc.identifier.citation Güner, M. (2021). Retail Data Predictive Analysis Using Machine Learning Models. MEF Üniversitesi Fen Bilimleri Enstitüsü, Bilişim Teknolojileri Yüksek Lisans Programı. ss. 1-39
dc.identifier.uri https://hdl.handle.net/20.500.11779/1686
dc.language.iso en
dc.publisher MEF Üniversitesi Fen Bilimleri Enstitüsü
dc.rights info:eu-repo/semantics/openAccess
dc.subject Makine Öğrenmesi, Satış Tahmini, Zaman Serileri, Tahminsel Analitik
dc.title Retail Data Predictive Analysis Using Machine Learning Models
dc.title.alternative Makine öğrenmesi modellerini kullanarak tahmine dayalı perakende verisi analizi
dc.type Master's Degree Project
dspace.entity.type Publication
gdc.author.institutional Güner, Müjde
gdc.author.institutional Çakar, Tuna
gdc.coar.access open access
gdc.coar.type text::thesis::master thesis
gdc.description.department Lisansüstü Eğitim Enstitüsü, Bilişim Teknolojileri Yüksek Lisans Programı
gdc.description.publicationcategory YL-Bitirme Projesi
gdc.description.scopusquality N/A
gdc.description.startpage 1-39
gdc.description.wosquality N/A
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FBE_BilişimTeknolojileri_MüjdeGüner.pdf
Size:
1.35 MB
Format:
Adobe Portable Document Format
Description:
YL-Proje Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: