Negatif Olmayan Gürültü Giderici Değişimli Oto-kodlayıcılar Kullanarak Tek Kanaldan Kaynak Ayrıştırma için Zayıf Etiket Denetimi

Loading...
Thumbnail Image

Date

2019

Authors

Cemgil, Ali Taylan
Kırbız, Serap

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

Derin öğrenme modelleri, büyük miktarda etiketlenmiş veri bulunduğunda kaynak ayrıştırmada çok başarılı olmaktadır. Bununla birlikte, dikkatlice etiketlenmiş veri kümelerine erişim her zaman mümkün olmamaktadır. Bu bildiride, kısa konuşma karışımlarını ayrıştırmayı öğrenmek için kaynak işaretlerini değil de sadece sınıf bilgisini kullanan zayıf bir denetim önerilmektedir. Negatif olmayan bir modeldeki her bir sınıfla degişimsel bir otomatik kodlayıcıyı (VAE) ilişkilendirilmektedir. Derin evrisimsel VAE’lerin, herhangi bir kaynak sinyaline ihtiyaç duymadan, bir ses karı¸sımındaki karmasık isaretleri kestirmek için önsel bir model sundugu gösterilmektedir. Ayrıstırma sonuçlarının kaynak isaret denetimiyle esit düzeyde oldugu gösterilmektedir.
Deep learning models are very effective in source separation when there are large amounts of labeled data available. However it is not always possible to have carefully labeled datasets. In this paper, we propose a weak supervision method that only uses class information rather than source signals for learning to separate short utterance mixtures. We associate a variational autoencoder (VAE) with each class within a nonnegative model. We demonstrate that deep convolutional VAEs provide a prior model to identify complex signals in a sound mixture without having access to any source signal. We show that the separation results are on par with source signal supervision

Description

Keywords

Kaynak ayrıştırma, Zayıf denetim, Weak supervision, Source separation, Variational autoencoders, Değişimsel oto-kodlayıcılar

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Karamatlı, E., Cemgil, A. T. & Kırbız, S. (Nisan 24-26, 2019). Negatif olmayan gürültü giderici değişimli oto-kodlayıcılar kullanarak tek kanaldan kaynak ayrıştırma için zayıf etiket denetimi, 27th Signal processing and communications applications conference (SIU) içinde, ss. 1-4. Sivas, Türkiye : IEEE. DOI: https://doi.org/10.1109/SIU.2019.8806536

WoS Q

N/A

Scopus Q

N/A
OpenCitations Logo
OpenCitations Citation Count
5

Source

2019 27th Signal processing and communications applications conference (SIU)

Volume

Issue

Start Page

1

End Page

4
PlumX Metrics
Citations

CrossRef : 4

Scopus : 5

Captures

Mendeley Readers : 8

SCOPUS™ Citations

5

checked on Feb 03, 2026

Web of Science™ Citations

3

checked on Feb 03, 2026

Page Views

173

checked on Feb 03, 2026

Downloads

15

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.16418009

Sustainable Development Goals

SDG data is not available