Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1084
Title: Carbon Price Forecasting Models Based on Big Data Analytics
Authors: Çanakoğlu, Ethem
Ağralı, Semra
Yahşi, Mustafa
Keywords: Decision tree
Random forest
Artificial neural network
Forecasts
Big data
Carbon price
Publisher: Taylor and Francis Ltd.
Source: Yahsi, M., Canakoglu, E., & Agrali, S. (February, 2019) Carbon price forecasting models based on big data analytics, Carbon Management, 10:2, 175-187, DOI: 10.1080/17583004.2019.1568138
Abstract: After the establishment of the European Union's Emissions Trading System (EU-ETS) carbon pricing attracted many researchers. This paper aims to develop a prediction model that anticipates future carbon prices given a real-world data set. We treat the carbon pricing issue as part of big data analytics to achieve this goal. We apply three fundamental methodologies to characterize the carbon price. First method is the artificial neural network, which mimics the principle of human brain to process relevant data. As a second approach, we apply the decision tree algorithm. This algorithm is structured through making multiple binary decisions, and it is mostly used for classification. We employ two different decision tree algorithms, namely traditional and conditional, to determine the type of decision tree that gives better results in terms of prediction. Finally, we exploit the random forest, which is a more complex algorithm compared to the decision tree. Similar to the decision tree, we test both traditional and conditional random forest algorithms to analyze their performances. We use Brent crude futures, coal, electricity and natural gas prices, and DAX and S&P Clean Energy Index as explanatory variables. We analyze the variables' effects on carbon price forecasting. According to our results, S&P Clean Energy Index is the most influential variable in explaining the changes in carbon price, followed by DAX Index and coal price. Moreover, we conclude that the traditional random forest is the best algorithm based on all indicators. We provide the details of these methods and their comparisons.
URI: https://doi.org/10.1080/17583004.2019.1568138
https://hdl.handle.net/20.500.11779/1084
ISSN: 1758-3012
1758-3004
Appears in Collections:Endüstri Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
Carbon price forecasting models based on big data analytics.pdf
  Until 2089-02-11
Yayıncı Sürümü - Makale3.59 MBAdobe PDFView/Open    Request a copy
Show full item record



CORE Recommender

SCOPUSTM   
Citations

47
checked on Jan 18, 2025

WEB OF SCIENCETM
Citations

43
checked on Jan 18, 2025

Page view(s)

46
checked on Jan 13, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.