Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1157
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorÇakar, Tuna-
dc.contributor.authorAkman, Özkan-
dc.date.accessioned2019-11-12T13:41:59Z
dc.date.available2019-11-12T13:41:59Z
dc.date.issued2018-
dc.identifier.citationAkman, Ö. (2018). Credit risk models using machine learning models, MEF Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiyeen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1157-
dc.description.abstractCredit scoring is an important subject in financial institutions, mainly in banks. I want to examine some machine learning techniques to find out a model that performs good in predicting or classifying the loaner person a good credit or a bad one by evaluating his/her demographic features as marital status, wealth, job seniority, monthly income and expenses.en_US
dc.language.isoenen_US
dc.publisherMEF Üniversitesi, Fen Bilimleri Enstitüsüen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCredit Rankingen_US
dc.subjectCredit Scoring Modelsen_US
dc.subjectMachine Learningen_US
dc.subjectSupport Vector Machineen_US
dc.subjectDecision Tree Modelen_US
dc.subjectLinear Discrimant Analysisen_US
dc.subjectLoan-to-Value Rationen_US
dc.subjectSaving Capacityen_US
dc.subjectLogistic Regression Modelen_US
dc.titleCredit Risk Models Using Machine Learning Modelsen_US
dc.title.alternativeMakine öğrenmesi uygulamaları ile kredi risk modellemeen_US
dc.typeMaster's Degree Projecten_US
dc.relation.publicationcategoryYL-Bitirme Projesien_US
dc.departmentBüyük Veri Analitigi Yüksek Lisans Programıen_US
dc.institutionauthorAkman, Özkan-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeMaster's Degree Project-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:FBE, Yüksek Lisans, Proje Koleksiyonu
Files in This Item:
File Description SizeFormat 
ÖzkanAkman.pdfYL-Proje Dosyası8.54 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

48
checked on Nov 18, 2024

Download(s)

14
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.