Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1159
Title: Smart Precision Agriculture With Autonomous Irrigation System Using Rnn-Based Techniques
Other Titles: Yapay sınır ağlarına dayanan teknikler kullanan otonom sulama sistemleri ile akıllı hassas tarım
Authors: Anuşlu, Timuçin
Advisors: Özlük, Özgür
Keywords: Long Short-Term Memory Networks
Recurrent Neural Network
Smart Precision Agriculture
Irrigation System
Internet of Things
Uzun Kısa-Vadeli Hafıza Ağları
Yinelenen Yapay Sinir Ağları
Akıllı Hassas Tarım
Sulama Sistemleri
Nesnelerin İnterneti
Publisher: MEF Üniversitesi, Fen Bilimleri Enstitüsü
Source: Anuşlu, T. (2017). Smart precision agriculture with autonomous irrigation system using rnn-based techniques, MEF Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye
Abstract: The study presents a solution to improve freshwater usage for irrigation in the agriculture by building a neural network model to predict soil moisture at 20 cm level with time series data over longer periods of time.
URI: https://hdl.handle.net/20.500.11779/1159
Appears in Collections:FBE, Yüksek Lisans, Proje Koleksiyonu

Files in This Item:
File Description SizeFormat 
TimuçinAnuşlu.pdfYL-Proje Dosyası10.1 MBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

Page view(s)

18
checked on Nov 18, 2024

Download(s)

16
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.