Default Predicton Models for Mortgage Loans

Loading...
Thumbnail Image

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

MEF Üniversitesi, Fen Bilimleri Enstitüsü

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

The mortgage financial crisis which in U.S. mid 2000’s has been expanded and took hold of the other countries in a short time. The impact of the crisis forced financial institutions, especially the banks, to monitor their credit portfolio closely. The aim of this study is to develop models for predicting mortgage default cases in the loan life cycle. Those models were developed by using 50.000 loan repayments that was randomly selected between 60 months. Total 622489 observation and 23 features were there in the dataset. Classification algorithms were applied on the models since the expected outputs of the models were either default (1) or not-default (0).
2000’ li yılların ortalarında ABD'de yaşanan ve ev kredilerinden kaynaklanan finansal kriz kısa süre içinde dünya çapında etkilerini göstermiştir. Yaşanan bu krizin etkileri finansal kurumları, özellikle bankaları, kredi portföylerinin kalitesini daha yakından izleme zorunda bırakmıştır. Bu çalışmanın amacı, finansal kurumlar için, müşteriye tahsis edilen ipotek karşılıklı ev kredisinin vadesi içerisinde batıp batmayacağını tahminleyecek modeller oluşturmaktır. İlgili modeller için 50.000 kredinin rastgele seçilen geri ödeme aylarından oluşan veri seti kullanılmıştır. Veri setinde toplam 622489 adet gözlem ile ilgili kredilere ait 23 özellik bulunmaktadır. Kredi tahsis edilen müşterilerin batıp (1) batmayacağı (0) sorusuna sınıflandırma modelleri kullanılarak cevap aranmıştır.

Description

Keywords

Default Prediction, Supervised Learning, Regression Model, Mortgage Loans, Ev Kredileri, Batık Tahmini, Güdümlü Öğrenme, Sınıflandırma Modelleri

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Tezgiden, İ. (2018). Default predicton models for mortgage loans, MEF Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Page Views

134

checked on Dec 14, 2025

Downloads

73

checked on Dec 14, 2025

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

5

GENDER EQUALITY
GENDER EQUALITY Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo