Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1222
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorKoç, Utku-
dc.contributor.authorYücel, Kadir Kutlu-
dc.date.accessioned2019-11-12T13:42:05Z
dc.date.available2019-11-12T13:42:05Z
dc.date.issued2019-
dc.identifier.citationYücel, KK. (2019). Aalyzing The Drivers of Customer Satisfaction Via Social Media, MEF Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiyeen_US
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1222-
dc.description.abstractSocial media became a great influence force during the last decade. Active social media user population increased with the new generations. Thus, data started to accumulate in tremendous amounts. Data accumulated through social media offers an opportunity to reach valuable insights and support business decisions. The aim of this project is to understand the drivers of customer satisfaction by public sentiments on Twitter towards a financial institution. Data was extracted from the most popular microblogging platform Twitter and sentiment analysis was performed. The unstructured data was classified by their sentiments with a lexicon-based model and a machine learning based model. The outcome of this study showed machine learning based model successfully overcame the language specific problems and was able to make better predictions where lexicon-based model struggled. Further analysis was performed on the extreme daily average sentiment scores to match these days with prominent events. The results showed that the public sentiment on Twitter is driven by three main themes; complaints related to services, advertisement campaigns, and influencers’ impact.en_US
dc.description.abstractSosyal medyanın etki alanı geçtiğimiz yıllarla birlikte giderek artmıştır. Yeni jenerasyonlarla birlikte aktif olarak sosyal medya kullanan nüfus artış göstermiştir. Bu sebeple büyük veri birikimi artmıştır. Sosyal medya üzerinden oluşan büyük veri şirketlerin iş yapış şekillerine yönelik değerli kavrayış ve karar alma mekanizmalarına destek fırsatları sunmaktadır. Bu çalışmanın amacı bir finansal kurumun müşterilerinin memnuniyet seviyelerini sosyal medyada oluşan algıyı kullanarak anlamaya çalışmaktır. Çalışma kapsamında kullanılan veri popüler mikro-blog sitesi Twitter üzerinden derlenmiştir. Yapılandırılmamış bu veri sözlük tabanlı ve makine öğrenmesi tabanlı iki model kullanılarak analiz edilmiştir. Çalışma sonucu makine öğrenmesi tabanlı modelin sözlük tabanlı modelin karşılaştığı Türkçe kaynaklı sorunlardan daha az etkilendiği ve daha başarılı tahminler üretebildiğini göstermiştir. Analizin sonraki aşamasında ortalama sonucu aşırı uçlarda çıkan günler aynı günlerde ortaya çıkan olaylar ile eşleştirilmiştir. Ortaya çıkan sonuçlara göre müşteri memnuniyeti sosyal medyada ortaya çıkan üç temel faktörden etkilenmektedir. Bunlar, şikâyet yönetimi, kampanya yönetimi ve sosyal medya fenomenlerinin etkisi olarak tanımlanmaktadır.en_US
dc.language.isoenen_US
dc.publisherMEF Üniversitesi, Fen Bilimleri Enstitüsüen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSentiment Analysisen_US
dc.subjectText Classificationen_US
dc.subjectTurkish Twitter Analysisen_US
dc.subjectMachine Learningen_US
dc.subjectPredictionen_US
dc.subjectDuygu Analizien_US
dc.subjectMetin Sınıflamasıen_US
dc.subjectTürkçe Twitter Analizien_US
dc.subjectMakine Öğrenmesien_US
dc.subjectTahminlemeen_US
dc.titleAnalyzing the Drivers of Customer Satisfaction Via Social Mediaen_US
dc.typeMaster's Degree Projecten_US
dc.relation.publicationcategoryYL-Bitirme Projesien_US
dc.departmentBüyük Veri Analitigi Yüksek Lisans Programıen_US
dc.institutionauthorYücel, Kadir Kutlu-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeMaster's Degree Project-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:FBE, Yüksek Lisans, Proje Koleksiyonu
Files in This Item:
File Description SizeFormat 
KadirKutluYücel.pdfYL-Proje Dosyası608.19 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

18
checked on Nov 18, 2024

Download(s)

14
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.