Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1302
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGökberk, Berk-
dc.contributor.authorAkarun, Lale-
dc.contributor.authorAktaş, Müjde-
dc.date.accessioned2020-02-07T14:59:58Z
dc.date.available2020-02-07T14:59:58Z
dc.date.issued2019-
dc.identifier.citationAktaş, M., Gökberk, B. & Akarun, L., (6-9 November, 2019). Recognizing non-manual signs in Turkish sign language, 2019 Ninth International Conference on Image Processing Theory, Tools and Applications (IPTA 2019), pp 1-6, DOI: https://doi.org/10.1109/IPTA.2019.8936081en_US
dc.identifier.isbn9781728139753-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1302-
dc.identifier.urihttps://doi.org/10.1109/IPTA.2019.8936081-
dc.description.abstractRecognition of non-manual components in sign language has been a neglected topic, partly due to the absence of annotated non-manual sign datasets. We have collected a dataset of videos with non-manual signs, displaying facial expressions and head movements and prepared frame-level annotations. In this paper, we present the Turkish Sign Language (TSL) non-manual signs dataset and provide a baseline system for non-manual sign recognition. A deep learning based recognition system is proposed, in which the pre-trained ResNet Convolutional Neural Network (CNN) is employed to recognize question, negation side to side and negation up-down, affirmation and pain movements and expressions. Our subject independent method achieves 78.49% overall frame-level accuracy on 483 TSL videos performed by six subjects, who are native TSL signers. Prediction results of consecutive frames are filtered for analyzing the qualitative results.en_US
dc.description.sponsorshipIEEE France Section, IEEE Turkey Section, Universite Paris-Saclay, Yeditepe University.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof9th International Conference on Image Processing Theory, Tools and Applications, IPTA 2019en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFacial expression recognitionen_US
dc.subjectNon-manual sign analysisen_US
dc.subjectSign language recognitionen_US
dc.titleRecognizing Non-Manual Signs in Turkish Sign Languageen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/IPTA.2019.8936081-
dc.identifier.scopus2-s2.0-85077967469en_US
dc.authoridBerk Gökberk / 0000-0001-6299-1610-
dc.description.woscitationindexConference Proceedings Citation Index - Science-
dc.description.WoSDocumentTypeProceedings Paper
dc.description.WoSPublishedMonthKasımen_US
dc.description.WoSIndexDate2019en_US
dc.description.WoSYOKperiodYÖK - 2019-20en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.endpage6en_US
dc.identifier.startpage1en_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.wosWOS:000529320000011en_US
dc.institutionauthorGökberk, Berk-
item.grantfulltextembargo_20400130-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
BerkGökberk.pdf
  Until 2040-01-30
Yayıncı Sürümü - Konferans Dosyası1.58 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

6
checked on Nov 23, 2024

Page view(s)

36
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.