Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1310
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSevgili, Türkan-
dc.contributor.authorKoç, Utku-
dc.date.accessioned2020-02-28T11:25:13Z
dc.date.available2020-02-28T11:25:13Z
dc.date.issued2020-
dc.identifier.citationKoç, U., Sevgili, T. ( January 27, 2020). Consumer loans’ first payment default detection: a predictive model. Turkish Journal of Electrical Engineering & Computer Sciences, 28 (1), 167-181. DOI: https://doi.org/10.3906/elk-1809-190en_US
dc.identifier.issn1300-0632-
dc.identifier.urihttps://doi.org/10.3906/elk-1809-190-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1310-
dc.description.abstractA default loan (also called nonperforming loan) occurs when there is a failure to meet bank conditions and repayment cannot be made in accordance with the terms of the loan which has reached its maturity. In this study, we provide a predictive analysis of the consumer behavior concerning a loan’s first payment default (FPD) using a real dataset of consumer loans with approximately 600,000 records from a bank. We use logistic regression, naive Bayes, support vector machine, and random forest on oversampled and undersampled data to build eight different models to predict FPD loans. A two-class random forest using undersampling yielded more than 86% on all performance measures: accuracy, precision, recall, and F1-score. The corresponding scores are even as high as 96% for oversampling. However, when tested on the real and balanced dataset, the performance of oversampling deteriorates as generating synthetic data for an extremely imbalanced dataset harms the training procedure of the algorithms. The study also provides an understanding of the reasons for nonperforming loans and helps to manage credit risks more consciously.en_US
dc.language.isoenen_US
dc.publisherTUBITAK SCIENTIFIC & TECHNICAL RESEARCH COUNCILen_US
dc.relation.ispartofTurkish Journal of Electrical Engineering & Computer Sciencesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectImbalanced class problemen_US
dc.subjectDefault loanen_US
dc.subjectUndersamplingen_US
dc.subjectMachine learningen_US
dc.subjectFirst payment defaulten_US
dc.subjectOversamplingen_US
dc.titleConsumer Loans' First Payment Default Detection: a Predictive Modelen_US
dc.typeArticleen_US
dc.identifier.doi10.3906/elk-1809-190-
dc.identifier.scopus2-s2.0-85079890925en_US
dc.authoridUtku Koç / 0000-0001-6699-6195-
dc.description.woscitationindexScience Citation Index Expanded-
dc.identifier.wosqualityQ4-
dc.description.WoSDocumentTypeArticle
dc.description.WoSInternationalCollaborationUluslararası işbirliği ile yapılmayan - HAYIRen_US
dc.description.WoSPublishedMonthOcaken_US
dc.description.WoSIndexDate2020en_US
dc.description.WoSYOKperiodYÖK - 2019-20en_US
dc.identifier.scopusqualityQ3-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.endpage181en_US
dc.identifier.startpage167en_US
dc.identifier.issue1en_US
dc.identifier.volume28en_US
dc.departmentMühendislik Fakültesi, Endüstri Mühendisliği Bölümüen_US
dc.identifier.trdizinid334568en_US
dc.identifier.wosWOS:000510459900012en_US
dc.institutionauthorKoç, Utku-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.01. Department of Industrial Engineering-
Appears in Collections:Endüstri Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR-Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Consumer loans.pdfYayıncı Sürümü_Makale Dosyası822.24 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 23, 2024

Page view(s)

34
checked on Nov 18, 2024

Download(s)

66
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.